OLYMPUS

MEDICAL BUSINESS

オリンパスの医療分野

OLYMPUS

OUR PURPOSE 私たちの存在意義

世界の人々の健康と安心、心の豊かさの実現

Making people's lives healthier, safer and more fulfilling

ご案内

オリンパスは、1950年に世界で初めて、実用的な胃カメラを開発し、日本人の死亡原因のトップだった胃がんの「早期診断」方法の確立に大きく貢献しました。その後、内視鏡を使ったさまざまな検査・治療方法の開発にも、力を尽くしてきました。

今、医療の現場で、「低侵襲治療」の流れが強まっています。 当社では消化器科をはじめとして、泌尿器科や呼吸器科などの さまざまな疾患に対し、患者さんの身体的な負担軽減に貢献す る治療機器を提供しています。入院期間の短縮や早期の社会復 帰を実現するなど、患者さんのQOL(Quality of Life:生活の 質)の向上や、医療費の削減にもつながっています。

「オリンパスの医療分野」は、こうしたオリンパスの医療分野の概要について、広く社会に知っていただくことが狙いです。当社の医療機器を使った最新の診断・治療動向についてもご紹介します。

オリンパス株式会社 IR部門

Contents

オリンパスの医療分野

- 02 早期診断と低侵襲治療
- 04 オリンパスが解決する社会課題
- 06 内視鏡事業(ESD)の概要
- 08 治療機器事業(TSD)の概要
- 10 内視鏡事業(ESD)の特長
- 18 治療機器事業(TSD)の特長
- 23 TOPIC シングルユース内視鏡

Appendix

- 24 主な病気、手技と使用される製品
 - 24 消化器科
 - 31 泌尿器科
 - 32 呼吸器科
 - 34 耳鼻咽喉科
- 35 内視鏡の構造と仕組み
- 38 内視鏡事業の歴史
- 42 治療機器事業の歴史
- 45 医療分野のあゆみ

将来予想に関する記述についての注意事項

本「オリンパスの医療分野」のうち、将来予想に関する記述は、現在入手可能な情報による判断および仮定に基づいたものであり、判断や仮定に内在する不確定な要素および今後の事業運営や内外の状況変化等による変動可能性に照らし、実際の業績等が目標と大きく異なる結果となる可能性があります。

製品に関する注意事項

「オリンパスの医療分野」に掲載している製品は、一部の地域で未発売のものがあります。

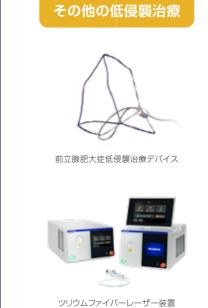
オリンパスの 医療分野

内視鏡事業 (Endoscopic Solutions Division)

治療機器事業 (Therapeutic Solutions Division)

早期診断

- 当社の主力製品である消化器内視鏡は、病変の発見・診断・治療の質や検査効率の向上を目指した技術を搭載することで、がんなどの消化器疾患の病変を初期の段階で発見することに貢献しています。
- また、観察中に疑わしい病変が見つかった場合には、その部位を採取して病理検査を 行うことが可能です。
- 最近では、内視鏡の拡大機能により、組織を傷つけることなく、その場で拡大画像から 確定診断を行える可能性も期待されています。


オリンパスの医療分野は、消化器内視鏡、外科内視鏡、医療サービス等を扱う「内視鏡事業(Endoscopic Solutions Division: ESD)」と消化器科(処置具)や泌尿器科、呼吸器科などの医療機器を扱う「治療機器事業(Therapeutic Solutions Division: TSD)」に分かれます。この2つの事業から展開される多彩な製品およびサービスによって、「早期診断」、「低侵襲治療」という2つの価値を提供し、患者さんのQOL(Quality of Life:生活の質)向上と世界的に増加傾向にある医療コストの抑制に貢献してまいります。

低侵襲治療

- 消化器内視鏡は治療用の処置具とともに使用することで、早期がんの治療をはじめとして、ポリープ切除、誤飲した異物の摘出など、さまざまな治療を行うこともできます。
- 泌尿器分野では、高齢化の進展に伴い増加が予想されている前立腺肥大症の治療機器 として、切除手術なしでクリニックでも治療ができる機器を展開しています。患者さんの 体内に異物が残存しない低侵襲な治療方法です。
- また、内視鏡を用いた外科手術(腹腔鏡手術)では、従来の開腹手術のようにおなかを 大きく切る必要がなく、患者さんの感じる術後の痛みが少なくて済むと言われており、 入院期間の短縮や早期の社会復帰に貢献するなど、さまざまなメリットがあります。

オリンパスが解決する社会課題

世界初

70% 消化器内視鏡シェア*1

*1 2020年11月現在

内視鏡は、がんを発見し、治療する上で重要な役割を果たしています。例えば、大腸がんは、2020年のデータでは年間約190万人の方が新たに罹患し、約90万人の方が亡くなっていると報告されており、今後もこの数は増加が見込まれます。大腸がんは、がんが広がっていない初期の段階で見つかれば治る確率が大幅に高まります。一方、早期の大腸がんは自覚症状がないことが多く、がん検診は早期発見・早期治療のために非常に重要です。この大腸がんの診断・治療等のために大腸内視鏡検査は年間で約5,000万件実施されており、そのうち多くで当社の製品が使われています。

190万人

大腸がんの罹患者数/年*2

*2 年間罹患者数·グローバル 出典:GLOBOCAN 2020

5,000万件

大腸内視鏡件数/年*3

*3 自社調べ。グローバル:米国、カナダ、ドイツ、フランス、イタリア、スペイン、英国、日本、中国、韓国、オーストラリア、インド/データは地域により2018年あるいは2019年時点

100 適応可能な疾患数*4

罹患数の多い がんに

治療機器を提供*5

また、内視鏡は病変の発見や診断だけでなく、処置、治療にも活用されます。消化器内視鏡に挿入して使用する内視鏡用処置具以外にも、泌尿器科・呼吸器科などさまざまな診療科に向けた多種多様な治療機器を提供しており、当社の製品で約100の疾患に適応させることができます。罹患者数の多い上位5つのがんのうち、4つのがん(肺がん、大腸がん、前立腺がん、胃がん)*5への治療方法を提供するとともに、その他のがんの治療機器の開発も行い、世界の人々の健康のために貢献しています。

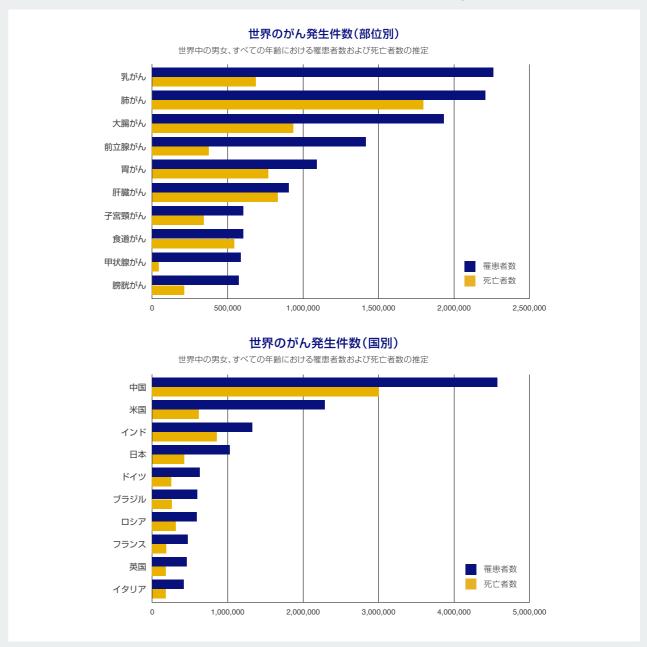
オリンパスは、「胃がんをなんとか治したい」という医師の願いを実現するため、1950年に世界初の実用的な胃力メラを

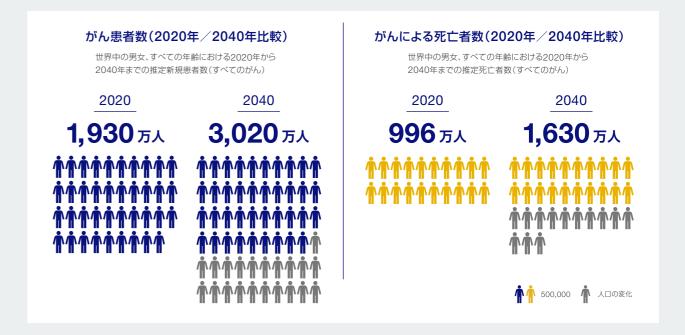
開発しました。それから現在に至るまで、医師との二人三脚で 内視鏡技術の改良を進め、診断・治療方法を充実させてきまし

た。内視鏡医のニーズに応え、世界をリードし続けてきた高い

技術力は当社製品の優位性の一つとなっており、現在、主力

の消化器内視鏡では世界シェア約70%を誇っています。

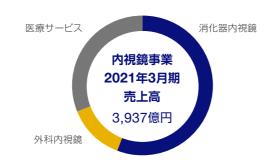

*4 2021年3月現在


*5 2021年3月現在

出典:GLOBOCAN2020 罹患者数1位の乳がんを除く

〈参照データ〉

出典:GLOBOCAN 2020 ©International Agency for Research on Cancer 2021



内視鏡事業(ESD)の概要

オリンパスの内視鏡事業では、内視鏡システム、スコープ(軟性 鏡・硬性鏡)から、医療サービスに至るまで、さまざまな製品・ サービスにより医療の現場に貢献しています。

※2022年3月期より、内視鏡事業の消化器内視鏡に分類していた気管支鏡につきま して、治療機器事業の呼吸器科に移管しています。2021年3月期の実績も同様の組 み替えを行っています。

消化器内視鏡

▶ スコープ(軟性鏡)

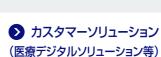
先端部分が曲がる特性を活かし、口や鼻等 から挿入して器官の中等を自在に検査・治療 することに適しています

▶ 洗浄消毒(リプロセス)

内視鏡自動洗浄消毒装置

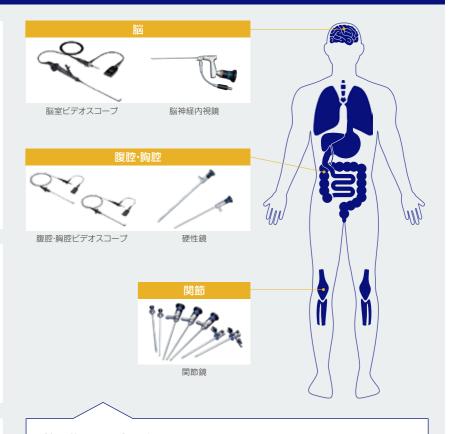
▶詳細は統合レポート2021のP48へ

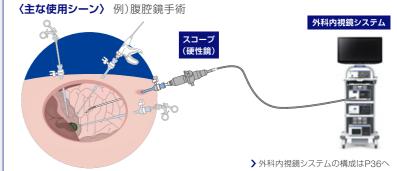
外科内視鏡


外科手術の際、内視鏡を主に体表に開けた小孔から腹腔内へと差し込み、腔内の状態を確認する ための製品群

▶ 外科内視鏡システム 外科手術用内視鏡システム

▶ スコープ(硬性鏡)


金属製の筒の中にレンズを収めた硬性鏡 は、腹腔鏡手術と呼ばれる内視鏡を使った 外科手術に適しています



カスタマーソリューション バーチャルコラボレーション

医療サービス

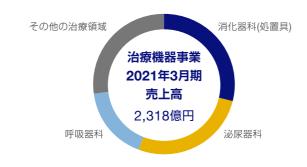
消化器内視鏡および外科内視鏡製品の一般修理・サービス契約

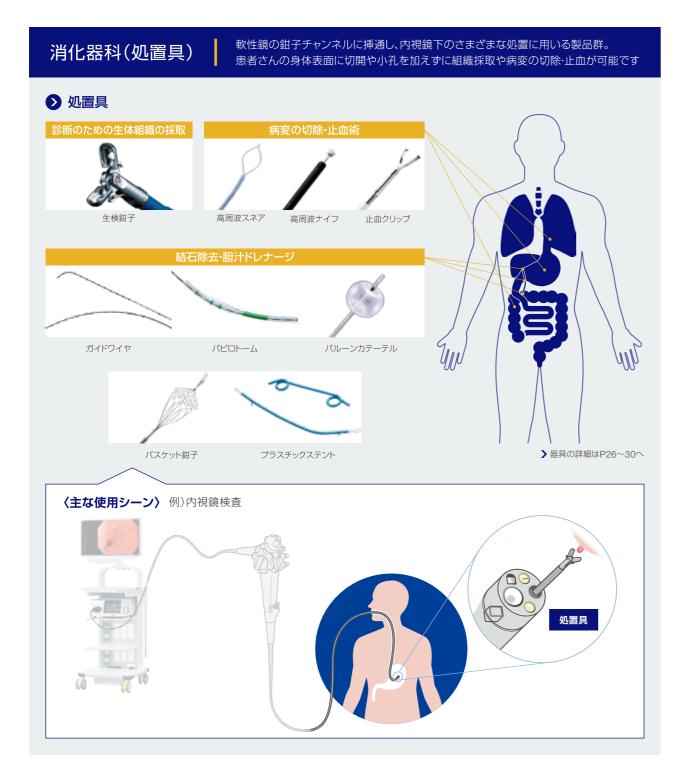
▶ 一般修理

- 各地域の修理拠点での修理
- フィールドサービスによる施設における修理(洗浄機などの設置型機器の場合)

▶ サービス契約

- 単年あるいは複数年の契約
- 修理金額の全額あるいは一部金額の補償
- 故障品の修理中には代替品の優先提供
- 故障予防教育の提供
- その他、各種サービスを包括的に提供


リペアセンター


*実際のカプセル内視鏡には口ゴは入っていません

治療機器事業(TSD)の概要

オリンパスの治療機器事業では、幅広いラインアップの処置具 に加え、泌尿器科や呼吸器科、耳鼻咽喉科、婦人科の内視鏡や 治療機器、外科用エネルギーデバイスを取り扱い、さまざまな 製品が疾患の予防、診断、治療に役立っています。

※2022年3月期より、内視鏡事業の消化器内視鏡に分類していた気管支鏡につきま して、治療機器事業の呼吸器科に移管しています。2021年3月期の実績も同様の組 み替えを行っています。

08 09

行為を行うための製品群

♪ エネルギーデバイス

バイポーラ高周波·超音波統合エネルギーシステム

内視鏡事業

内視鏡事業は、医療分野における革新的な技術と製造技術で医療従事者の皆さまと共に歩んでまいりました。診断そして低侵襲治療において、より良い臨床結果を生み、医療経済にベネフィットをもたらし、世界の人々の健康やQOL向上に貢献してまいります。1950年に世界で初めてガストロカメラを実用化して以来、オリンパスの内視鏡事業は成長を続けており、現在では、軟性内視鏡、硬性鏡、ビデオイメージングシステムから、カスタマーソリューション、修理サービスに至るまで、さまざまな製品・サービスで医療に貢献しています。

内視鏡事業(ESD)の特長

り 1 競争力のある 製品開発

) 消化器内視鏡領域

- 1950年に世界初の実用的な胃カメラを開発してから現在に至るまで、医師との二人三脚で内視鏡技術を改良
- NBIやTXI、RDI、EDOFなど、世界の内視鏡検査 の質の向上に貢献する技術を開発

外科内視鏡領域

- 4K/3D技術搭載の高画質·高品質製品を提供
- 先進的な蛍光イメージング技術を獲得、 次世代分子イメージング技術に向けた研究・開発 を推進

各製品における市場規模および成長率見通し OLYMPUS

※本ページの市場規模、成長率見通しは自社調べ。市場規模は2021年3月末時 点。成長率見通しは2021年3月期を起点に、2022年3月期から2024年3月期。

02

強固な事業基盤

0

グローバルに広がる サービスネットワーク

欧州・米州・中近東アフリカ・日本・中 国・アジアの各地域にサービス拠点 を備え、世界の医療機器メーカーの 中で業界トップクラスのサービスネッ トワークを構築

大規模内視鏡修理センター

9

内視鏡医の育成を支援

経済発展に伴い、「早期診断」「低侵襲治療」への要望が大きくなっている中国やアジア諸国にてトレーニングセンターを順次開設し、内視鏡医の育成を支援

上海トレーニングセンター

(3

医師のニーズを具現化する 独自のものづくり力

多様化する顧客ニーズに応えるため、 高度な製造技術と多品種少量生産に より、300種類以上の内視鏡を提供

内視鏡スコープ

①1 競争力のある製品開発

消化器内視鏡領域

I Past

胃カメラの誕生~普及

東京大学附属病院・小石川分院外科で林田健男助教授の支援の下、宇治医師がオリンパスの技術陣と試作した胃カメラは、1952年「ガストロカメラI型(GT-I)」として発表されました。しかし、初期の製品は故障が多く、撮影術も確立していなかったため、なかなか普及にまでは至りませんでした。胃カメラ事業も赤字が続き、オリンパス社内でも、このまま事業を継続すべきか、議論があったようです。そうした中、胃カメラの可能性に着目し、普及に尽力したのが、東大本院第一内科(田坂内科:田坂定孝教授)第8研究室です。

田坂内科では、まず、ユーザーの立場から故障対策を助言しました。さらに大きな課題だったのが、胃内の撮影技術の確立でした。胃カメラでは、医師が胃の中を直接確かめることはできず、手探りの中で、良好な画像を得るのが非常に難しかったのです。

そこで、胃カメラと胃の中の各部位の位置関係を探るため、X線を使い、一例ごとに胃カメラの挿入度合い、軸のひねり具合、胃への送気量などを記録するなど、気の遠くなるような作業を繰り返しました。こうして1956年頃に撮影術が確立します。田坂内科が中心となって設立した「胃カメラ研究会」(現日本消化器内視鏡学会)の役割も忘れることはできません。1955年に第1回胃カメラ研究会が開かれ、胃がんを中心に研究報告がされました。1958年の第5回研究会では、発表が16題、出席者も200人を超え、臨床への応用が進みました。

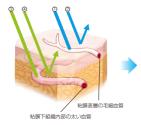
メーカーであるオリンパスとの間では、1955年に技術連絡会(後のガストロカメラ推進連絡会)を設置。毎月一度、故障対策や機器の改良について意見交換がされました。こうした取り組みが、胃力メラ普及の原動力となったのです。

臨床試験に臨む宇治医師(中央)

第1回胃カメラ研究会(壇上は田坂教授)

Present

画像強調観察とNBI


オリンパスが1950年に開発した胃カメラは、早期胃がんの診断学を大きく発展させました。その後の研究の積み重ねにより、消化器内の粘膜表面の微妙な色の変化により、早期の病変が発見できることがわかってきました。そうした中、病変の疑いのある粘膜に色素を散布し、早期の病変を発見する「色素法」が1970年代以降急速に普及しました。オリンパスは、この原理を発展させ、光学的な手法により病変部を浮かび上がらせる技術を開発しました。それが、NBIに代表される「光デジタル法による画像強調観察技術」です。

NBI(Narrow Band Imaging:狭带域光観察)

がんなどの腫瘍は、細胞を増殖させるため、毛細血管を使ってエネルギーを集めます。血管がない場合は、自分でつくります。この現象は、「血管新生」と言われます。一方、狭い帯域の青い光は、血管中のヘモグロビンに強く吸収される性質があります。NBIは専用の

光学フィルタにより、光のスペクトラムを狭帯域化します。 ヘモグロビンに強く吸収される波長で粘膜表面の毛細血管を浮かび上がらせることで、病変部を見つけやすくします。

通常光の内視鏡の「色素法」に似ていますが、NBIは光学的な手法であるため、粘膜の状態の影響を受けにくく、色素散布の手間もいりません。

① 青色の光: 岩頭の池、塔分にある-岩血管中のヘモグロビンに 強く吸むては好しません ② 青色の光: 北野販売で強く保計して強く吸むされ反射しません ③ 緑色の光: 深野の心部中のヘモグロビンに強く吸むされ反射しません ④ 緑色の光: 深野の地部下脚側が空気を貸削します ⑤ 反射した光と反射しない光を軟合し中別しやすく映像化します

NBIモード時のモニター画像

茶色: 粘膜表層の毛細血管 青色: 粘膜下組織内部の太い血管

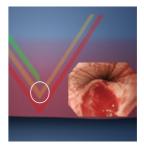
更なる治療・診断の向上をもたらすイメージング技術

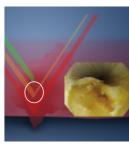
2020年には、消化器内視鏡システムの最新モデル「EVIS X1」を欧州、日本、アジア一部地域で発売しました。この機種では、更なる治療・診断の向上をもたらすイメージング技術として、下記3つの技術を搭載しました。これにより、がんなどの消化器疾患の早期発見・早期診断・低侵襲治療に貢献します。

EVIS X1

TXI

TXI 構造色彩強調機能

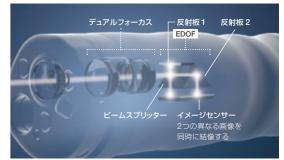

通常光観察下での粘膜表面の「構造」「色調」「明るさ」の3つの要素を最適化する画像技術です。通常光観察では見にくい画像上のわずかな色調や構造の変化が、TXIを活用することにより強調され、病変部などの観察性能向上に貢献することが期待されます。



RDI

RDI赤色光観察

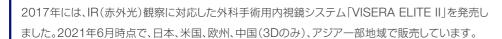
緑・アンバー・赤の3色の特定の波長の光を照射することで、深部組織のコントラストを形成する、光デジタル技術を用いた当社独自の画像強調観察技術です。内視鏡治療中に発生する消化管出血により、視野が妨げられ病変部の処置が困難になるケースがあります。これは、治療時間の延長や医師のストレスにつながりますが、RDI観察を行うことにより深部血管などの視認性向上が支援され、迅速かつ容易な止血処置をサポートし、より安全で効率的な治療に寄与することが期待されます。



₹ EDOF 被写界深度拡大技術

近い距離と遠い距離のそれぞれに焦点が合った2つの画像を同時に取り出して合成することで、リアルタイムに焦点範囲の広い内視鏡画像を得る技術です。これまで、内視鏡検査・治療を行う際、心臓の拍動や腸の蠕動運動がある状況での焦点合わせは、検査時間の延長や医師のストレスを招いていました。

EDOFにより明瞭な観察画像が得られることで、内視鏡検査におけるさまざまな課題を解消し、検査時間短縮による効率化や病変の診断精度向上など、より高精度な検査への貢献が期待されます。


▶ 外科内視鏡領域

高画質·3D

外科内視鏡領域では、2013年にソニーとの合弁会社である、ソニー・オリンパスメディカルソリューションズ株式会社を設立しました。ソニーが有するデジタルイメージング技術などの最先端のエレクトロニクス技術と、オリンパスが有するレンズ、光学技術などの医療機器製造・開発技術を組み合わせた、新たな製品の研究および開発に取り組んでいます。

● 4K技術搭載の外科手術用内視鏡システム

フルハイビジョン映像に比べて画素数が約4倍となる4K(3840X2160ピクセル以上)の技術を搭載した外科手術用内視鏡システムです。細部までクリアで高精細な映像が手術時の視認性向上に貢献します。また、豊富な色再現性により、微細組織(血管、神経、リンパ管など)の境界などを容易に識別することをサポートします。大画面モニターと電子ズームの拡大視で、細微な手術をサポートできることも特長です。

● IR(赤外光)観察に対応した外科手術用内視鏡システム

血流情報が強調表示されるIR(赤外光)観察やNBIといった特殊光観察、3Dによる立体視にも対応 した外科手術用内視鏡システムです。症例に応じた最適な観察映像を提供します。

VISERA 4K UHD

VISERA ELITE II

Present

蛍光イメージング

2021年には、オランダの医療機器メーカーQuest Photonic Devices社を買収し、外科イメージング領域で拡大している蛍光イメージング市場のポートフォリオを拡充しました。

● 蛍光ガイド手術用のイメージングシステム

蛍光イメージングは、特殊光観察技術の1つであり、特定の蛍光色素が生体構造に集積するという性質を利用した観察方法です。観察用途・目的に応じた色素を特定の励起波長と組み合わせることで、通常の白色光の下では観察の難しい組織や病変を可視化する技術です。

当社は、開腹手術・腹腔鏡手術の両方に対応する蛍光ガイド手術用のイメージングシステム「Spectrum®*1」をポートフォリオに加えています。

Spectrum®

I Future

分子イメージング

がんと特異的に結合する抗体を組み合わせた蛍光薬剤を用いて、がん病変を可視化する分子イメージング*2という技術の研究が現在進んでおり、実用化が期待されています。Quest Photonic Devices社では、蛍光イメージング技術を利用して次世代分子イメージング用薬剤の開発に着手するさまざまなバイオテクノロジー企業と共同研究・共同開発を進めており、蛍光ガイド下のがん手術における新たな技術の可能性を追求しています。

3 強固な事業基盤

● グローバルに広がるサービスネットワーク

オリンパスのグローバルな修理拠点一覧(●は重修理*3対応拠点 2018年4月時点)

内視鏡は人体に使われる精密機械であり、最高の機能を発揮するには、最高のメンテナンスをする必要があります。オリンパスは、世界中の患者さんが安心して内視鏡検査・治療を受けられるように、業界トップクラスのグローバルなサービス体制を構築しています。また、万が一の災害などの緊急事態発生に備え、各修理拠点が相互にバックアップできるような体制にしています。

世界最大の内視鏡修理センター

米国カリフォルニア州サンノゼ。ここにオリンパスが誇る世界最大の内視鏡修理センター「サンノゼ ナショナルサービスセンター」があります。敷地面積は、8万㎡。コーポレートカラーであるブルーを基調とした建物の内側で、サービススタッフ約450名が整然と修理作業を行っています。サンノゼは、分解を含む本格的な修理(重修理)*3を集中して行うために1979年に設置されました。それまでは、全米各地のサービス拠点で内視鏡の重修理も行っていましたが、高度な技能や多くの交換部品を必要とする内視鏡修理で、高い品質と短い修理期間を両立するためには、センター方式が向いていると判断したためです。

□界最大の内視鏡修理センター (米国サンノゼ)

高い修理品質

人体に直接挿入して使う内視鏡は、少しの作動不良が医療事故につながる可能性があります。そのため、修理完成品の品質は新品と同等のものが求められます。「安心・安定して使えること」が、内視鏡の本質的な価値の一つ。オリンパスはこうした思想から、1952年の内視鏡事業のスタート時より、サービス体制の充実に力を入れてきました。

14 | | 15

^{*1 2021}年9月末時点で医薬品医療機器等法未承認品です

^{*2 2021}年9月末時点で医薬品医療機器等法未承認の技術です

^{*3} 重修理:故障した製品を分解し、検査・修理すること

2 内視鏡医の育成を支援

現在、中国やアジア諸国では急速な経済発展に伴って、「早期診断」「低侵襲治療」への要望が大きくなっています。オリンパスは、日 米欧と同様に、中国やアジア諸国においてもトレーニング機会の提供を通じた医師の育成を支援しています。

中国での取り組み

中国では政府が医療制度改革を進めていることに加え、先進国同様に人口の高齢化も急速に 進んでいます。こうしたなか、医療機関では、患者さんの増加に内視鏡医の数が追いついておら ず、内視鏡医の育成が急務となっています。オリンパスは2008年、上海市郊外の研究·産業振 興地区に上海トレーニングセンターを開設しました。上海市の空港から交通の便も良く、中国全 土から医師が訪れます。近未来的な外観の建物内には、トレーニングセンターとコールセンター が設置されており、トレーニングセンターでは、消化器内視鏡の検査のほか内視鏡用処置具や 外科製品の操作が習得できます。最上階には、100名近く収容可能な講演ホールを備え、大容 量ブロードバンド回線を通じ、中国国内外の医師と学術交流を行うことが可能です。

上海トレーニングセンターは、営業担当者・サービス担当者の研修も行い、販売サービスの質 の向上にも貢献しています。コールセンターは、全国の医療機関・営業担当者・サービス担当者・ 特約店からの問い合わせに対応しており、その対応内容は日米欧と同等です。オリンパスは同 様のトレーニングセンターを2010年に北京、2013年に広州に設置しています。さらに、全国各 地の病院と提携している協業トレーニングセンターも拠点として、さまざまな学習プログラムを 提供することで、中国全土にわたり内視鏡医の育成を支援しています。また、オリンパスでは日 本人医師を中国に招聘し、中国人トレーナーを育成する活動も行っています。直近では日本人 医師がオンライン上で中国のトレーナーの活動に対してレクチャーをする際や、症例発表への 評価・コメント等を行う際のサポートをしています。こういった取り組み等が功を奏し、近年目覚 ましい成長を実現しています。


上海トレーニングセンター

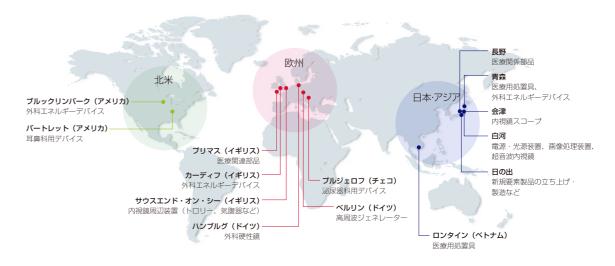
施設内でさまざまなトレーニングを 受けることができる

統合レポート2021 医療事業戦略:中国市場 (事業成長を牽引する中国市場、 中国ドクター・中国戦略担当役員の 視点)はこちらから

医療分野における中国の売上成長推移

約4.2倍

中国市場の2021年3月期と 2012年3月期の売上高を 比較した数字


アジア諸国での取り組み

総人口が13億人以上で、中国に続く有望市場と見られるインドにおいては人口の多さや経済発 展の速さから、今後、医療機器の普及が急速に進むと考えられています。日本や中国と同様に消 化器疾患が多く、膵臓・胆のう疾患に関連した内視鏡処置が盛んに行われています。オリンパス はインドの学会と連携し、内視鏡トレーニングをサポートしています。また、2016年には東南ア ジアの医療従事者をターゲットとしたトレーニングセンターをタイに設立しており、東南アジア 諸国での内視鏡の普及、および医療技術基盤の発展に尽力しています。2017年には韓国でも トレーニングセンターを設立しました。今後もアジア各地域での内視鏡医の育成支援、内視鏡 を利用した早期診断・低侵襲治療・手技普及に力を入れ、患者さんのQOL向上に貢献していき ます。

韓国トリーニングセンター

❸ 医師のニーズを具現化する独自のものづくり力

オリンパスの製造拠点は、日本・アジア、北米、欧州の3極体制から成り立っています。まず、日本・アジアには、会津、白河、青森、日の出 (東京都)、長野の国内5工場とベトナム工場があり、主力の消化器内視鏡はすべて日本国内で製造しています。北米は、2つの製造拠 点がベースで、主に外科エネルギーデバイスや耳鼻科用デバイスなどを製造しています。欧州では、ドイツ、チェコ、イギリスの6つの 製造拠点にて硬性鏡、泌尿器科/婦人科向け処置デバイス、外科エネルギーデバイスや内視鏡関連機器を製造しています。

高度な製造技術に強み

国内工場は、高度のすり合わせ技術を必要とする消化器内 視鏡システムを基幹部品から開発・製造し、かつ、熟練した製 造スタッフが独自のノウハウを蓄積していることが強みで す。会津工場は、スコープを一貫して製造しています。内視 鏡の主要パーツである撮像ユニット、操作部、接続部などに ついて、開発と製造が一体となって要素技術を開発すること により、超多品種極少生産を実現しています。多様化する顧 客ニーズに応えるため、例えば加工が難しいスコープ先端 部のステンレス部品は、自ら工作機械まで開発し、ノウハウ の保持を図っています。白河工場は、内視鏡用ビデオプロ セッサや光源、超音波内視鏡、カプセル内視鏡などを生産し ており、半導体、基板を含めた電装関連の要素技術、回路設 計、品質保証に強みを持っています。改善活動にも積極的 で、ビデオプロセッサで生産リードタイムの大幅な短縮を実 現しています。青森工場は、内視鏡用処置具の生産で高い 技術を有しており、消化管内のポリープの切除に使う高周波 スネアや胆管用処置具などでノウハウがあります。日の出工 場では、ディスポーザブル製品や試作品の製造、青森のサテ ライト工場であるベトナム工場では、内視鏡用処置具と関連 製品を生産しています。

超多品種極少生産を実現する内視鏡システム生産の特殊性

内視鏡の製品バリエーションは年々増加し、現在は300種類を 超えます。高度な製造技術と多品種少量生産が求められる中、 「ものづくり」に必要な部材が市場になければ、材料開発から設 備まで「自分たちでつくる」姿勢を貫いてきました。内視鏡を構 成する部品は非常に複雑な形状のため、その加工に用いる刃物 は既製品がありません。そこで、新たな部品が必要になるたび に、それを加工する刃物からつくり上げていくことから始まりま す。自分たちでつくり、問題を解決してはまたつくるという繰り返 しにより独自の製品をつくり上げ、世界規模の信頼獲得につなげ てきました。

治療機器事業

治療機器事業は、医療分野における革新的な技術と製造技術で医療従事者の皆さまと共に歩んでまいりました。診断そして低侵襲治療において、より良い臨床結果を生み、医療経済にベネフィットをもたらし、世界の人々の健康やQOL向上に貢献してまいります。ポリープ切除用のスネア開発に始まり、さまざまな製品が疾患の予防、診断、治療に役立っています。

治療機器事業(TSD)の特長

01

3つの治療領域(消化器科・泌尿器科・呼吸器科)への注力

肖化器科

N尿器科

呼吸器科

シ 治療機器事業では複数の臨床専門分野にまたがり、低侵襲治療に貢献。 その中でも、特に消化器科・泌尿器科・呼吸器科のカテゴリーでの製品拡充を強化

02

グローバル事業統括 機能を米国に配置・確立

世界最大の治療機器市場である、 米国の医療クラスターおよび 最大の顧客へのアクセスを強化 03

事業開発機能の強化・確立により、 社外パートナーとの協働や ライセンシング、M&Aを通じて、 製品ポートフォリオの拡充・補完を推進

○消化器科·泌尿器科·呼吸器科を中心に 複数のM&Aを実施

※本ページの市場規模、成長率見通しは自社調べ。市場規模は2021年3月末時点。成長率見通しは2021年3月期を起点に、2022年3月期から2024年3月期。 呼吸器科(キャピタル製品)および呼吸器科(シングルユース製品)の数値は、2020年12月に買収したVeran Medical Technologies社の影響を含みません。

3つの治療領域(消化器科・泌尿器科・呼吸器科)への注力

治療機器事業で注力する領域

治療機器事業では、当社が高い競争力を有する領域に注力していきます。

消化器科、泌尿器科、呼吸器科の領域においては、製品ポートフォリオ拡充のための投資や、高度な新治療技術の普及、グローバル な販売チャネルの活用等によって、成長の拡大を図ってまいります。

消化器科(処置具) 市場No.2

のポジション

泌尿器科(キャピタル製品) 市場No.1 のポジション

泌尿器科(シングルユース製品)

市場No.2 のポジション

呼吸器科(キャピタル製品)

市場No.1 のポジション

呼吸器科(シングルユース製品)

市場No.1 のポジション

ERCP*1、ESD*2、メタルステント、止血デバイスなど主要カテゴリーにお いて、臨床的および経済的に差別化された製品ポートフォリオを拡充

事業領域

止血クリップ

4 狭窄解除

2 ESD*2&EMR*3 3 ERCP*1

切開剥離デバイス

5 組織採取

生検鉗子

6 内視鏡周辺デバイス

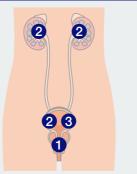
大腸内視鏡先端アタッチメント

Arc Medical Design

2020年8月、英国医療機器メーカーArc Medical Design社を買収し、消化器科のポー トフォリオを拡充。

代表製品:ENDOCUFF VISION™*4

大腸内視鏡の先端に取り付ける機器で、フレキシブルアームが大腸のひだを掻き分け、 粘膜を固定することで、大腸内視鏡検査や内視鏡的ポリープ切除術などにおける視認性 の維持に貢献するように設計されています


▶当領域における、主な病気、手技と使用される製品はP24~30へ

泌尿器科

顧客志向のイノベーションと説得力のある臨床上の差別化により、前立 腺肥大症、結石治療、膀胱がんの分野でグローバルリーダーを目指す

事業領域

1 前立腺肥大症 の治療

前立腺肥大症

低侵襲治療デバイス*4

の治療

ツリウムファイバー レーザー装置*4

2 尿路結石 3 膀胱腫瘍(膀胱 がん)の診断

レゼクトスコープ

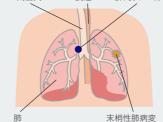
Medi-Tate

2021年5月、イスラエルの医療機器メーカーMedi-Tate社を買収し、泌尿器科のポート フォリオを拡充。

代表製品:iTind*4

前立腺肥大症治療のための低侵襲治療デバイス。診療所やクリニックでの日帰り治療が 可能であり、患者さんにとっては永久留置物がなく、再治療法の選択肢が幅広いことが 特長です


▶ 当領域における、主な病気、手技と使用される製品はP31~32~


呼吸器科

正確で早期の診断とステージングにより、肺がんの患者さんのケアと 予後を改善するためのソリューションを提供し市場をリードする

事業領域

1 超音波気管支鏡

ガイド下針生検

EBUS-TBNAシステム

2 末梢気管支鏡

検査

電磁ナビゲーションシステム*4

3 気管支鏡検査に

よる診断と治療

気管支内バルブシステム*4

Veran Medical Technologies

2020年12月、呼吸器インターベンション分野*5に注力する米国のVeran Medical Technologies社を買収し、呼吸器科のポートフォリオを拡充。

代表製品:SPiN Thoracic Navigation System®*4

細く枝分かれした気管支末梢部への気管支鏡や処置具の挿入を支援する電磁ナビゲー ションシステムです

▶ 当領域における、主な病気、手技と使用される製品はP32~33へ

- *1 Endoscopic Retrograde Cholangio Pancreatography:内視鏡的逆行性胆道膵管造影術
- *2 Endoscopic Submucosal Dissection:內視鏡的粘膜下層剥離術
- *3 Endoscopic Mucosal Resection:內視鏡的粘膜切除術
- *4 2021年9月末時点で医薬品医療機器等法未承認品です
- *5 気管支鏡を使った治療・診断

グローバル事業統括機能を米国に配置・確立

当社は、治療機器事業のグローバル事業統括機能を米国に配置しています。米国は世界最大の 治療機器市場であり、当事業の中でも最も売上高が高い市場です。

また、豊富な病院・研究機関・競合企業、そして最大の顧客へのアクセスが可能であることか ら、米国にてグローバルな意思決定を行っています。

米国にある治療機器事業の グローバル事業統括拠点

事業開発機能の強化・確立により、社外パートナーとの協働や ライセンシング、M&Aを通じて、製品ポートフォリオの拡充・補 完を推進

米国にグローバル事業統括機能を置いたことにより、社外パートナーとの協働やライセンシング、M&Aを通じた、製品ポートフォリオ の拡充・補完を効率的かつスピーディーに推進できるようになりました。

特に、直近2020年から2021年にかけては、複数のM&Aを実施しました。2020年8月には英国医療機器メーカーArc Medical Design社、12月には呼吸器インターベンション分野に注力する米国のVeran Medical Technologies社、2021年5月にはイスラ エルの医療機器メーカーMedi-Tate社を買収し、それぞれ、消化器科、呼吸器科、泌尿器科のポートフォリオを拡充しています。

今後も低侵襲治療の貢献に寄与するべく、自社開発のみならず、社外パートナーとの協働やライセンシング等も検討し、成長を加 速してまいります。

■ ライセンシング M&A

2020年

独占販売提携により、イスラエルMedi-Tate社製品を米国市場に導入

英 Arc Medical Design社を買収

米 Veran Medical Technologies社を買収

2021年

朝日インテックとディスポーザブルガイドワイヤ「Fielder18」の独占販売契約を締結

イスラエル Medi-Tate社を買収

▶ 詳細はリンクのニュースリリースページをご覧ください

TOPIC

シングルユース内視鏡

リユース内視鏡およびシングルユース内視鏡に対する基本認識

当社では、2019年11月に発表した経営戦略のうち、内視鏡分野でのリーダーシップをさらに強化するための重要な戦略的取り組みとし て、リユース内視鏡に加えて、シングルユース内視鏡で製品ポートフォリオを補完してまいります。

リユース内視鏡は、高度な画像処理や操作性に対する臨床上のニーズが高いことに加え、病院にとっての経済的な効率性から、今後も さまざまな手技の第一選択肢となると考えています。一方、シングルユース内視鏡は、特定の手技に関する選択肢として急速に普及して おり、シングルユース内視鏡の市場は、今後2、3年の間に毎年20~40%の成長が見込まれています。

当社においてシングルユース内視鏡を導入予定(販売中)の領域(2021年9月現在)

Focus on the Customer

当社は市場や顧客からのニーズを満たすために、内視鏡のポートフォリオを強化するにあたり、 シングルユース内視鏡が必要であると認識しています。

感染管理に対する要求

耐久性に対する要求

症例特有の需要 (緊急症例、ワークフロー改善)

オリンパスのゴールは、適切な内視鏡を提供し、 世界中のあらゆる患者さん、手技、医療現場にとっての 内視鏡医療のパートナーになることです。

シングルユース内視鏡における注力分野


十二指腸鏡·胆道鏡 (消化器科)

尿管鏡 (泌尿器科) 気管支鏡 (呼吸器科)

米国にて販売中

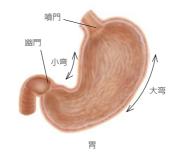
2021年4月、オリンパスは米国にて当社初のシング ルユース気管支ビデオスコープH-SteriScopes™ の販売を開始し、呼吸器分野のポートフォリオを拡 大しました。

5つのモデルからなるこのシングルユース気管支 ビデオスコープは、ワークフローおよび生産性を高 めながら、医師が求める患者の診断、治療をサポー トする高い性能を有します。

※H-SteriScopes™は、オリンパスの100%子会社であるVeran Medical Technologies社と、Hunan Vathin Medical社との提携による商品群です。また、 H-SteriScopes™は、2021年9月末時点で医薬品医療機器等法未承認品です。

主な病気、手技と使用される製品

消化器科 消化管(食道·胃·大腸·小腸)


主な病気 1 食道がん

食道の壁は多層の粘膜や筋肉から形成され、この一番内側の粘膜に食道がんは発生し ます。「扁平上皮がん」と呼ばれ、日本人の食道がんの9割以上はこのタイプを占め、飲 酒やタバコの習慣がリスク要因とされています。欧米では「腺がん」と言われるがんが あり、欧米人の食道がんの6~7割を占めます。胃酸が食道に逆流し、食道粘膜が炎症 を起こすバレット食道が原因と見られています。

主な病気 2 冒がん

胃炎や萎縮を起こしている胃の粘膜から発生すると考えられています。胃の粘膜に萎 縮が起こると、萎縮性胃炎となり、その後、腸粘膜に置き換わる「腸上皮化生」が発生、 胃がんに変わることがわかっています。最近では、これにヘリコバクター・ピロリ菌が関 わっていることが判明しています。ピロリ菌が胃粘膜の炎症を起こし、萎縮性胃炎や腸 上皮化生を引き起こすと見られています。

主な病気 3 大腸がん


食生活の欧米化により、日本人の間で増加傾向にあります。大腸がんには直腸がんと 結腸がんがありますが、特に結腸がんが急速に増えています。動物性の脂肪を摂ると、 消化を助けるために胆汁酸が多く分泌されます。脂肪の消化の際に発生する物質の中 に発がん物質があり、大腸の粘膜にがんが発生すると考えられています。

腺腫と呼ばれる良性のポリープが粘膜にできることがあります。大腸がんの多くは、 このポリープが深く関係していると考えられています。また、粘膜から直接発生する平 坦型や陥凹(かんおう)型のがんもあることが最近わかってきました。大腸がんのでき やすい部位ですが、直陽とS状結腸で約7割を占めます。

主な病気 4 大腸ポリープ

大腸粘膜に隆起する組織を大腸ポリープといいます。ポリープは、直腸とS状結腸に高 い確率で発生し、大きさは数mmから3cm程度まであります。大きく腫瘍性、非腫瘍性 に分けられます。小さなポリープはほとんど症状がありませんが、大きくなってくると、 便潜血や鮮血便の症状がでます。

主な病気 5 小腸腫瘍

小腸にできる腫瘍です。発生頻度は消化管腫瘍全体の5%以下で、あまり多くはありま せんが、悪性度が高く、小腸腫瘍のおよそ3分の2が悪性腫瘍といわれています。腹痛 や出血、狭窄といった症状をきっかけに発見されることがほとんどで、早期診断は困難 といわれている一方、カプセル内視鏡やバルーン内視鏡などの内視鏡技術の向上に よって、小腸の詳細な検査ができるようになり、小腸腫瘍の発見頻度は上昇傾向にある とされています。

小腸と周辺臓器

主な病気 1 2

上部消化管用スコープ

ESD 使用される主なスコープ

上部消化管用ビデオスコープは、挿入部の長さが主に1,030mmで、食道から 胃、十二指腸までを診ます。先端部は、正面にレンズが向いている直視型で、正 面を観察するのに適しています。太さは、口から挿入する標準タイプで直径約 10mm、鼻からも入れられる細径タイプで半分の約5mmです。

ビデオスコープ

主な病気 3 4

大腸用スコープ ESD 使用される主なスコープ

大腸用ビデオスコープは、成人で長さが1.5mに達する大腸に対応するため、標 準で1,330mm、長尺タイプが1,680mmと上部消化管用より長いのが特徴で す。先端部は直視型です。大腸への挿入性を確保するために、挿入部の硬さが 硬度可変ダイヤルで変えられるようになっています。直径も約13mmと上部消 化管用に比べて少し太くなっています。

大腸用ビデオスコープ

主な病気 5

小腸用スコープ ESD 使用される主なスコープ

先端に風船(バルーン)がついた外筒を使用し、膨らませた風船で腸管を固定 し、内視鏡を進ませていきます。口から挿入する方法と肛門から挿入する方法 があります。通常の内視鏡のように鉗子口を備えているので、生検や簡単な処 置をすることもできます。小腸を観察するため、長さは2,000mmと長く、直径 は約9mmです。

小腸用ビデオスコープ

シングルバルーン

超音波ビデオスコープ

通常の内視鏡のほかに、スコープの先端部に超音波探触子(プローブ)を装備し た「超音波ビデオスコープ」があります。これは、超音波を使い、臓器の表面から は見えない、深い位置の病変部を発見するために用います。消化管では、粘膜 の下に隠れている腫瘍やがん、食道静脈瘤、胆道・膵臓では、がんや胆石、膵石 の検査に使われています。穿刺ができるタイプでは、目視できない粘膜下の腫 瘍の診断、および、膵のう胞の診断や治療に使用されています。

超音波ビデオスコープ

招音波画像

大腸内視鏡用のAI診断支援アプリケーションを搭載した 内視鏡CAD*1プラットフォーム「ENDO-AID*2」

ENDO-AIDは、消化器内視鏡システム「EVIS X1」と組み合わせることで、ポ リープ、がんなどの病変候補を自動的に検出しリアルタイムに表示できる、AI 技術を活用したCADプラットフォームです。AIによるサポートが加わることで、 大腸内視鏡検査中の医師の負担軽減に貢献し、医師の経験に関わらず、全体的 な臨床結果の向上に貢献することを期待しています。大腸病変の検出支援アプ リケーション「ENDO-AID CADe*3」を搭載しています。

大腸内視鏡先端アタッチメント「ENDOCUFF VISION™*2」

大腸内視鏡の先端に取り付けることで、大腸内視鏡検査や内視鏡的ポリープ切 除術などにおける視認性をサポートする製品もあります。ENDOCUFF VISION™は、円周上にフレキシブルアームを備えた独自のデザインが特長で あり、アームが大腸の歪曲部分や粘膜ひだを押し広げ、腸内の視認性が高まる ため、ポリープや腺腫を検出しやすくなります。本技術を用いた大腸内視鏡検 査は、標準的な大腸内視鏡検査と比較して、腺腫検出率を最大11%上昇させる ことが研究*4により示されています。この研究によれば、腺腫検出率が1%向上 するごとに大腸がんのリスクが3%減少するとされています。

小腸内視鏡システム「PowerSpiral」

電動回転で小腸を手繰り寄せながら目的部位に到達する小腸内視鏡システム です。内視鏡に装着したスパイラル形状のフィンを有するオーバーチューブを、 フットスイッチによる操作で電動により回転させる世界初の技術を搭載してい ます。内視鏡の挿入操作性の向上、挿入時間の短縮などが期待されます。

PowerSpiral

- *1 Computer Aided Detection/Diagnosis:AI による検出/診断支援
- *2 2021年9月末時点で医薬品医療機器等法未承認品です
- *3 Computer Aided Detection:AI による検出支援
- *4 Williet, N., Tournier, Q., et al. Effect of Endocuff-assisted colonoscopy on adenoma detection rate: meat-analysis of randomized controlled trials. Endoscopy, 50 (9), 846-860. Doi:10.1055/a0577-3500. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29698990

主な病気 1 2 3 4 5 に対する

診断方法

生検

病変の疑いのある組織を採取し、顕微鏡で病理学的に調べる検査方法です。

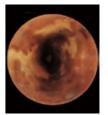
TSD ▶ 使用される主な処置具

生検鉗子

生検には、標準型鉗子や粘膜表面での滑りを防止する針の付いた針付き鉗子が使われ ます。そのほか、食道で使う片開き型、固い粘膜に用いる鰐口型などさまざまな種類が あります。

針付き鉗子


主な病気 1 2 3 4 5 に対する


色素散布

早期の腫瘍などの病変を発見しやすくするために、インジゴカルミン液やルゴール液 などの色素を組織に散布して、粘膜表面の変化を観察しやすくする検査方法です。

散布チューブ

散布チューブ

主な病気 4 に対する 内科的治療方法

ポリペクトミー

粘膜上皮に局所的に隆起した病変であるポリープの切除に使われる手技です。高周波スネ アをポリープの根元にかけて絞りながら電気を流して焼き切り、把持鉗子で回収します。高 周波電流を流さず10mm未満のポリープなどを絞って切除する、「コールドポリペクト ミー」と呼ばれる方法もあります。

TSD ▶ 使用される主な処置具

高周波スネア

スネアと呼ばれる金属ワイヤをループ状にした鉗子に高周波電流を流すことで、病変部を しばり、焼き切ることができる処置具です。高周波スネアの中には、高周波電流を流さず機 械的に病変を切除するコールドポリペクトミーに対応するものもあります。

ポリペクトミー

高周波スネア

主な病気 4 に対する

内科的治療方法

ホットバイオプシー

より小さなポリープやくびれのないポリープの場合は、高周波通電ができるホットバイオプ シー鉗子でつまんで切除します。切除と止血が同時にできる手技です。

TSD ▶ 使用される主な処置具

ホットバイオプシー鉗子

カップ部に高周波電流を流しながら組織を採取できる鉗子です。先端部は、生検鉗子とほ ぼ同一の構造となっています。操作部には、高周波焼灼電源装置と接続するためのプラグ があります。

ホットバイオプシー

ホットバイオプシー鉗子

主な病気 1 2 3 4 に対する

EMR

内科的治療方法

(Endoscopic Mucosal Resection:内視鏡的粘膜切除術)

隆起が少ない·平らな早期の腫瘍などの病変を切除する方法です。病変は高周波スネアに よって切除しますが、手技は複数あり、その一つが「吸引法(EMRC法)」です。粘膜下層に 生理食塩水などを注入して粘膜下層を厚くし、病変部を盛り上げ、内視鏡の先端部に付け た透明なキャップ内に吸引し、キャップに添えた高周波スネアで切除して、病変部を吸引し ながら回収します。

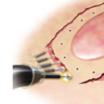
EMRC法

透明キャップ

透明キャップ

TSD ▶ 使用される主な処置具

スコープ先端に装着し、病変部を吸引するための処置具です。


主な病気 1 2 3 に対する

内科的治療方法

ESD

(Endoscopic Submucosal Dissection:內視鏡的粘膜下層剥離術)

EMRでは切除できる病変部が2cm以内に限られています。そのため、より広範囲の病変部 が切除できる手技として開発されたのが、ESDです。まず、針状メスを用いて病変部の周囲 をマーキングし、次に粘膜下に生理食塩水を注入して盛り上げます。次に高周波ナイフを用 いて病変部の全周を粘膜切除し、それから、粘膜下層を剥離し、把持鉗子で回収します。

ESD 高周波ナイフ

TSD ▶ 使用される主な処置具

高周波ナイフ

より広範囲の早期病変を切開・剥離するための処置具です。針状ナイフの先端にセラミック 製の絶縁体を装着したナイフなどがあります。絶縁体によって消化器に穴を開ける穿孔リス クを避けながら、広範囲の粘膜切除を可能にします。

主な病気 1 2 3 4 5 に対する

内科的治療方法

止血

ポリープや病変部を切除した後に出血する場合があります。そのために、止血のための手技 と処置具が開発されています。

TSD ▶ 使用される主な処置具

クリップ

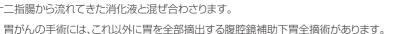
高周波止血鉗子 クリップ止血法

血管や粘膜をつまんで圧迫するための処置具です。クリップ止血法では、圧迫後クリップ先端部をそのまま留置します。

TSD ▶ 使用される主な処置具

高周波止血鉗子

高周波を用いた止血鉗子は、手技中に見られる太い血管や硬く滑りやすい組織をしっかりつかみ、凝固止血を行うための処置具です。


主な病気 2 に対する 外科的治療方法

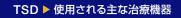
腹腔鏡補助下幽門側胃切除術

(LADG:Laparoscopic Assisted Distal Gastrectomy)

胃下部(幽門前庭部)から中部(胃体部)に限定される早期胃がんに適用します。胃の3分の2 以上と胃周囲のリンパ節を切除するのが標準的な術式です。

胃の再建方法には、ビルロートI法、ルーワイ法などがあります。ビルロートI法は、残った胃 と十二指腸をつなぐ方法です。ルーワイ法は、残った胃と空腸をつなぐ方法です。さらに、 残った十二指腸を空腸の下部に吻合します。食べたものは胃から空腸に流れ込み、空腸内で 十二指腸から流れてきた消化液と混ぜ合わさります。

ビルロートT法


ルーワイ法

主な病気 3 に対する

外科的治療方法

腹腔鏡補助下結腸切除術

大腸がんの手術は、結腸、盲腸、直腸が対象です。胃がんと同様に病変部とリンパ節の一括切 除が基本となります。大腸は胃に比べて、動静脈の走行が単純でリンパ節の切除も容易で す。そのため、近い将来、大腸がん手術の標準様式になる可能性が高いと言われています。

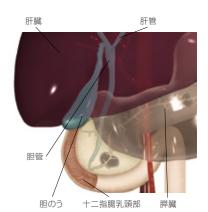
外科手術用治療機器

▶外科手術の際に使用される治療機器については P36~37^

腹腔鏡補助下結腸切除術

※上記の手技画像は京都府立医科大学有田先生ケース レポートより引用

消化器科 胆道·膵臓


主な病気 1

胆道(胆管、胆のう、十二指腸乳頭部の総称)に石ができる病気です。特に、胆のうにできる胆 のう結石が多くなっています。胆のうや胆管にできる胆道がんと胆石は関連があることがわ かっています。胆石が胆道を刺激して、炎症を起こし、それが長期化するとがんになると考え られています。

膵臓がん 主な病気 2

胆石

膵臓細胞から発生するがんです。膵臓がんは、外分泌系(消化酵素の分泌系)と、内分泌系 (ホルモンの分泌系)の2つのタイプに分けられます。外分泌系のがんが95%を占め、中でも 膵管の上皮から発生する浸潤性膵管がんが全体の85%を占めます。膵臓がんは、50~70 歳、特に高齢の男性に多く発症します。

十二指腸用スコープ

十二指腸用ビデオスコープは上部消化管用ビデオスコープ、大腸用ビデオスコープ と違い、先端部は対物レンズや照明レンズが側面に配置されている側視型です。こ れは、十二指腸経由で膵胆管を造影するERCP(内視鏡的逆行性胆道膵管造影術) や胆石の除去を行うEST(内視鏡的乳頭括約筋切開術)という手技に対応するため です。鉗子が側面90度を向くようにする起上装置が内蔵されています。長さは 1.240mmです。

十二指腸用ビデオスコープ

側視型光学系 (起上装置含む)

※今後、シングルユーススコープを導入予定です

主な病気 1 2

胆道用ビデオスコープは、十二指腸用ビデオスコープの鉗子チャンネルに挿入して 使用する細径スコープです。細い膵胆管内を直接観察したり、組織を採取したりする ことができます。

※今後、シングルユーススコープを導入予定です

胆道用ビデオスコープ

主な病気 1 2 に対する

診断方法

ERCP

(Endoscopic Retrograde Cholangio Pancreatography:內視鏡的逆行性胆道膵管造影術)

内視鏡を用いて行う胆道や膵管の検査方法です。造影チューブを十二指腸の乳頭から挿入 し、造影剤を膵胆管内に注入し、X線で透視します。

TSD ▶ 使用される主な処置具

造影チューブ

胆道用スコープ

膵管や胆管に挿入して、造影剤を直接注入しX線像を撮影するための細いチューブです。

造影チューブ

主な病気 1 に対する

内科的治療方法

EST

(Endoscopic Sphincterotomy:内視鏡的乳頭括約筋切開術)

胆石の除去などを狙いとした手技です。十二指腸の乳頭の開口部にパピロトームを挿 入し、高周波で乳頭括約筋を切開して広げ、胆石を排出します。排出には、バルーンカ テーテルやバスケット鉗子を使います。

TSD ▶ 使用される主な処置具

パピロトーム

胆管の出口にあたる乳頭部に挿入し、高周波を用いて切開するための電気メスです。

TSD ▶ 使用される主な処置具

バルーンカテーテル

砂泥状の小さな石をかき出す風船状のカテーテルです。

TSD ▶ 使用される主な処置具

バスケット鉗子

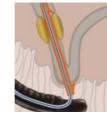
胆管内の結石を回収·除去するために使用する処置具です。

バルーンカテーテル

パピロトーム

主な病気 1 に対する 内科的治療方法

EBD


(Endoscopic Biliary Drainage:内視鏡的胆道ドレナージ)

胆石や病気による狭窄により、十二指腸への胆汁の流れが悪くなった場合に、その経路 を確保するため、胆管内にプラスチックステントや金属ステントを留置する手技です。

TSD ▶ 使用される主な処置具

プラスチックステント

胆管の狭窄・閉塞症例に対し、狭窄部に挿入して胆汁を排出させるステントです。比較 的短期間(数週間程度)の留置で用いられます。

FBD

プラスチックステント

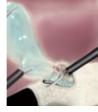
TSD ▶ 使用される主な処置具


金属ステント

金属製、メッシュ状のステントです。留置後の内腔がプラスチックステントよりも大きく、高 いドレナージ効果が期待できます。比較的長期(数ヶ月程度)の開存・留置が可能です。

主な病気 1 に対する

外科的治療方法


日本の内視鏡外科手術で最も多い術式です。「ラパコレ」とも呼ばれます。胆のうは肝臓の 裏側に張り付いており、それを電気メスや剥離鉗子で慎重にはがします。その後、クリップ で胆のう動脈と胆のう管を結紮・切り離し、肝臓から剥離します。最後に把持鉗子を使い、ト ロッカーを入れて孔から、胆のうを体外に取り出します。

外科手術用治療機器

腹腔鏡下胆のう摘出術

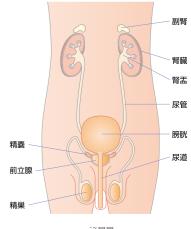
▶外科手術の際に使用される治療機器については P36~37^

胆のうの切り離し

切開部から取り出し

泌尿器科

前立腺肥大症 主な病気 1


膀胱の下にある前立腺が肥大して、尿道を圧迫し、排尿障害を起こす病気です。一度に 出る尿の量が減るのでトイレに行く回数が増え、残尿感などの症状が出ます。

尿路結石 主な病気 2

尿の中にある成分が、なんらかの原因で結晶となり、石のように固まってしまう病気で す。激しい痛み・血尿・排石(尿に石が混ざること)が典型的な症状です。

膀胱腫瘍(膀胱がん) 主な病気 3

尿路上皮ががん化することによって引き起こされます。大部分(90%以上)は尿路上皮 がんという種類ですが、まれに扁平上皮がんや腺がんの場合もあります。症状として主 なものは、血尿、排尿時の痛みなどです。

泌尿器

泌尿器用スコープ

泌尿器用スコープは、尿道から膀胱、さらに尿管から腎臓を診るために用いま す。オリンパスは、ビデオスコープとファイバースコープの両方を用意していま す。ビデオスコープは高性能CCDによる高解像度画像や、NBI観察にも対応し ています。また、膀胱頚部の観察を容易にするためUP側、Down側ともに275 度の湾曲角を実現しています。

泌尿器用ビデオスコープ

柔軟な湾曲性能

主な病気 1 3

で病変を切除するために用います。

TSD 使用される主なスコープ

尿道および膀胱を観察・治療する硬性鏡です。外尿道口から挿入し、高周波電流

レゼクトスコープ

主な病気 1 3 に対する

経尿道的切除術(TUR) 治療方法

尿道からレゼクトスコープを挿入し、手元のハンドルでループ型の電極を操作して、肥 大した前立腺や膀胱腫瘍を電気メスで切除する手技です。オリンパスでは、安定した切 れ味の高い切除のために、電解質溶液を介して電極全周を放電させて切除する 「TURis」と呼ばれる手技に対応しています。

経尿道的にレゼクトスコープを膀胱頸部付近に 挿入し、前立腺肥大部を切除

TSD ▶ 使用される主な治療機器

高周波焼灼電源装置

レゼクトスコープ(切除鏡)

内視鏡用処置具に接続して高周波電流を発生させることで、病変部の切開や凝固を行 うための機器です。

高周波焼灼電源装置

合わせたTURis専用電極

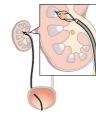
主な病気 1 に対する

治療方法

非切除デバイスによる 治療

経尿道的に前立腺部に3本のナイチノール製ワイヤのデバイスを留置し、5日間かけて 尿道を広げることで尿の流れを確保する「iTind*1」という低侵襲治療デバイスを展開 しています。診療所やクリニックでの日帰り治療が可能であり、患者さんにとっては永 久留置物がないことが特長です。

前立腺肥大症低侵襲治療デバイス*1


主な病気 2 に対する

治療方法

経尿道的尿路結石破砕術

(TUL: Transurethral Lithotripsy)

尿路に内視鏡を通して膀胱や尿管、腎臓の結石をレーザーや超音波エネルギーなどで 砕石します。破砕された結石は、自然に排出されるか、バスケット鉗子を用いて体外に取 り出します。

バスケット鉗子で結石を取 り除く様子

TSD ▶ 使用される主な治療機器

ツリウムファイバー レーザー装置

主に尿路(腎臓、尿管、膀胱、尿道)に発生した結石をレーザー装置によって細かく破砕 して体外に排出するため用いられる、ツリウムファイバーレーザー技術を利用した製品 です。軟組織の切除にも使用されます。砕石性能の向上により、手術時間の短縮に貢献 するほか、前立腺などの軟組織の治療にも使用できるため、本装置によりさまざまな処 置方法を提供することができます。また、装置の小型化の実現により省スペース化や手 術室間の移動の効率化にも貢献します。

レーザー装置

呼吸器科

主な病気 1 肺がん

気管支や肺の上皮に発生する悪性腫瘍です。喫煙などを背景として増加しており、がん の中でも死亡率が世界1位*2となっている疾患です。

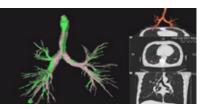
主な病気 2 肺気腫

気管支の先にある肺胞が膨張して機能が壊れてしまう疾患です。タバコなどの有害物 質の吸入によって肺や気管支が炎症を起こし、それがもとになり、進行性の呼吸困難が 現れる、慢性閉塞性肺疾患(COPD)の形態のひとつとして定義されています。

主な病気 1 2

TSD 使用される主なスコープ

呼吸器用スコープ


気管支や肺を診る呼吸器用スコープは、ビデオスコープ、ファイバースコープ、両方 を組み合わせたハイブリッドスコープの3種類があります。口から入れて、細い気管 支内腔を見ます。ビデオスコープは高解像度のCCDで鮮明な画像を得られます。 ファイバースコープは先端が細く、気管支の末梢部(先端部)まで挿入できるのが 特徴です。ハイブリッドタイプは、先端部にファイバーを、手元操作部にCCDを内蔵 したものです。ビデオスコープとファイバースコープ双方の利点を兼ね備えた、高 い挿入性と高画質を両立しています。

※2021年4月、米国にて当社初のシングルユース気管支鏡の販売を開始しました。 **>**詳細はP23をご覧ください

電磁ナビゲーションシステム

細く枝分かれした気管支末梢部への気管支鏡や処置具の挿入を支援するシス テム*1です。低線量CT検査の普及·拡大により、肺野部(気管支末梢領域)の病 変が発見されることが増えており、病変部の組織や細胞を採取し確定診断を行 うための気管支検査をサポートします。

電磁ナビゲーションシステム

主な病気 1 に対する

診断方法

超音波気管支鏡ガイド下針生検

(EBUS-TBNA)

主に肺がんリンパ節転移診断を目的に、気管や気管支経由で超音波画像をリアルタイ ムに観察しながら、リンパ節を穿刺し、検体を吸引採取する手技です。採取した検体は 病理検査で詳しく観察・診断し、今後の治療方針を決定します。

TSD ▶ 使用される主な処置具

吸引生検針

超音波内視鏡と組み合わせて気管、気管支の組織や細胞を吸引採取するために使用さ れる処置具です。

EBUS-TBNA

超音波気管支ファイバービ デオスコープと吸引生検針

主な病気 1 に対する

診断方法

細胞診

ブラシで粘膜をこすり、採取した組織を顕微鏡下で観察して診断する方法です。

TSD ▶ 使用される主な処置具

細胞診ブラシ

管腔が細い気管支などで使用される細胞採取用のブラシです。細胞診ブラシの直径は 1~5mm、長さは10mm以下です。

気管支の細胞診

細胞診ブラシ

主な病気 2 に対する

治療方法

気管支鏡下肺容量減少手術

肺気腫に対する低侵襲な治療手技です。気管支内にバルブを留置して肺胞を閉塞させ て肺容量を減少させます。具体的には、気管支鏡の鉗子チャンネルに入れたカテーテ ルを通じて、肺の上葉支に小型・傘状のバルブを留置します。留置されたバルブの逆止 弁効果によって、肺内の異常がある部位から正常な部位へと空気の流れを変化させる ことを目的としています。

バルブ

TSD ▶ 使用される主な処置具

肺気腫の治療において、薬剤効果がない、または肺縮小術や肺移植の手術が適用され ない症例に対する治療、および気胸や肺手術後に発生する持続性の空気漏れの処置を 目的に使われる治療機器*1です。

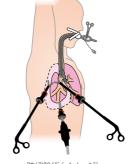
バルブ

- *1 2021年9月末時点で医薬品医療機器等法未承認品です
- *2 WHO がん統計データ:http://www.who.int/news-room/fact-sheets/detail/cancer

Appendix Appendix

主な病気 1 に対する

治療方法


肺切除術

肺がんの治療には、胸腔鏡下で直径3cm以内の腫瘍を切除する肺部分切除術や同 4cmを超える範囲を処置する肺葉切除術などがあります。

TSD ▶ 使用される主な治療機器

外科手術用治療機器

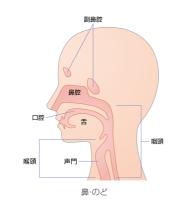
▶ 外科手術の際に使用される治療機器についてはP36~37へ

肺切除術(イメージ)

耳鼻咽喉科

主な病気 1 中耳炎

風邪などをきっかけに鼓室に細菌やウイルスなどが入って炎症が起き、膿や水がたまる 病気です。頭痛・めまいや難聴・耳のつまり感などを引き起こします。


主な病気 2 副鼻腔炎

通称「蓄膿症(ちくのう症)」は副鼻腔が、風邪や花粉症のほか、虫歯などにより炎症を起 こしてしまう病気で、鼻がつまり、色のついた粘り気のある鼻水が出ます。そのほか、嗅覚 異常、頭痛などの症状があります。

咽喉頭がん 主な病気 3

男性に多いのどのがんです。のどの痛み、声の枯れなど、風邪と似た症状が現れます。

主な病気 1 2 3

TSD ▷ 使用される主なスコープ

耳鼻咽喉用スコープ

耳、鼻、咽頭部を診るためのスコープです。最新のビデオスコープは超小型の高 性能CCDを採用して、従来に比べ、画像の解像度を大幅に上げたのが特徴です。 NBI(Narrow Band Imaging:狭帯域光観察)による観察も行えます。

主な病気 2 に対する

治療方法

内視鏡下副鼻腔手術

副鼻腔(鼻腔の周囲にある骨で囲まれた空洞)が慢性の炎症を起こし、汚い粘膜や膿が たまる副鼻腔炎(蓄膿症)の低侵襲治療法です。内視鏡下副鼻腔手術は、内視鏡を使用し て鼻の状態を見ながら、デブリッターなどの機器で治療をする手術法です。

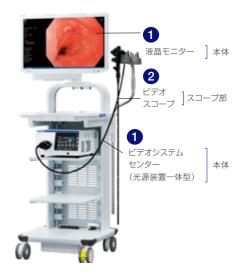
内視鏡下副鼻腔手術(イメージ)

TSD ▶ 使用される主な治療機器

デブリッター

吸引と切除・切削を同時に行いながら病的組織を除去する手術用切除装置です。

デブリッター


内視鏡の構造と仕組み

消化器内視鏡システムの構成

胃や大腸などの検査に使う消化器内視鏡は、現在、先端部に撮像素子を搭載したビデ オスコープが主流です。ビデオスコープシステムは、以下の機器から構成されます。

▲ 本体:液晶モニター ビデオシステムセンター

ビデオシステムセンターは、スコープ先端部の撮像素子がとらえた電気信号を映像 信号に変換し、液晶モニターに映し出します。ハイビジョンのほか、色彩強調、狭帯域 光観察などさまざまな画像処理に対応しています。最新の機種は光源装置一体型と なっており、ランプ寿命の長いLEDを搭載しています。色再現性の向上のため、 Violet、Blue、Green、Amber、Redの5色のLEDを採用しています。自動調光(明る さを自動的に調整する)機能や水・空気を送るポンプも内蔵しています。

2 スコープ部

ビデオスコープは、操作部、挿入部、接続部の3つの部分からなります。

● 操作部

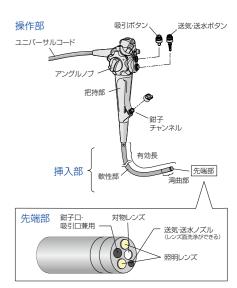
操作部のアングルノブはワイヤで内視鏡先端部とつながっています。アングルノブを 回すことにより、スコープ先端の湾曲部が上下、左右に曲がり体内への挿入を容易に するほか、体腔内を360度観察できます。

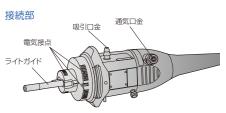
また、吸引ボタンと送気・送水ボタンがついています。ボタンを操作することで、空 気や水を送り込んだり、吸引します。操作部の根元には、鉗子チャンネルがあり、ここ から処置具を出し入れします。

● 挿入部

挿入部の先端部は、主に①対物レンズと撮像素子、②光源装置からの光で体内を照ら す照明レンズ、③処置具の出し入れと吸引口を兼ねた鉗子口、④水や空気を送り出す ノズルの4つから構成されます。

対物レンズは標準仕様が超広角レンズです。病変をより詳細に観察するため、拡大 ズーム機能がついたものもあり、高精細のハイビジョンに対応しています。


照明レンズは、ファイバーバンドル(光ファイバー)で導かれた光源装置の光で体腔 内を明るく照らし出します。鉗子口から処置具を出し入れし、組織を採取したり、病変 を切り取ったりします。ノズルは、レンズ部分に水をかけ、洗浄するほか、空気を送り込 み体腔内を膨らませる機能があります。


● 接続部

接続部は、ユニバーサルコードを通じて、ビデオシステムセンターとつながります。空 気や水の供給もここを通じて行います。

3 周辺機器

画像記録装置では、高精細な内視鏡画像(動画/静止画)の記録・管理・編集に至る 一連のプロセスを円滑に行います。

画像記録装置

Appendix

外科内視鏡システムの構成

内視鏡外科手術には以下の機器が使われています。従来の開腹手術を、内視鏡下に 置き換えたため、狭い体腔内でも手術できるように、さまざまな新しい器具が考案、 開発されました。

本体:液晶モニター ビデオシステムセンター 高輝度光源装置(IR機能)

外科内視鏡システムには、奥行きが把握しやすくなる3D内視鏡に対応する機種や、よ り細部までクリアで高精細な映像が得られる4Kモニターを採用した機種がありま す。ビデオシステムセンター(光源装置一体型)は、ビデオスコープからの電気信号を 映像信号に変換し、液晶モニターに映し出すプロセッサの役割と、ライトガイドケーブ ルを通じて、スコープ先端部に光を伝える光源装置の役割を担っています。高輝度光 源装置にはIR(赤外光)観察を可能にする機種もあります。

2 スコープ部

● ビデオスコープ

一般的なビデオスコープは、直径は5mm~10mm、長さは300mm~370mmで、 金属製の筒の先端にレンズとCCD、ライトガイドが内蔵されています。先端部が曲が るものと、まっすぐなものがあります。深い被写界深度を持つため、ピント合わせは不 要です。

外科用ビデオスコープ

● 硬性鏡(光学視管)

幅広い診療科でさまざまな硬性鏡が使用されています。泌尿器科では経尿道的前立 腺切除術や腎摘出術などに使用されています。耳鼻咽喉科では細い硬性鏡を用い、 鼓膜や副鼻腔や声帯などの観察、診断、治療を行います。婦人科では子宮筋腫の摘出 に使用されており、整形外科では関節腔内の観察、診断、治療に使用されています。

3 周辺機器

● 気腹装置

気腹装置は、腹腔内に炭酸ガスを送り込んで腹腔内を膨らませ、手術空間を確保する ために使います。炭酸ガスは、気腹針やトロッカーから送気します。術中の自然なガス 漏れに対しては、自動で炭酸ガスが補充されます。

気腹装置

● 画像記憶装置

画像記録装置では、高精細な内視鏡画像(動画/静止画)の記録・管理・編集に至る一 連のプロセスを円滑に行います。

画像記録装置

• トロッカー

体腔内に内視鏡や鉗子などを挿入して手術するために、体腔内と体外を継ぐ連絡路 の役割を担うのがトロッカーです。そこからスコープ、鉗子、電気メス、止血・縫合器具 などを挿入します。直径5mmから15mmの5つのタイプや、抜け止めのバルーン付 き、スレッドのあるタイプ等があります。現在では、シングルユースタイプが主流です。

鉗子類

鉗子には、ものをつかむ把持鉗子、組織を剥離する剥離鉗子、鋏の機能を持った鋏型 鉗子などがあります。電気メスの機能が付属しているものもあります。

把持鉗子先端部

剥離鉗子先端部

止血用クリップ

内視鏡外科手術では体腔内での止血が難しいため、血管を迅速に閉鎖するために、ク リップを用います。これを収めるピストル状の器具がクリップアプライヤーです。ク リップはホッチキスのように連発式です。

止血用クリップ(イメージ)

超音波エネルギーデバイス

手術の重要なツールである超音波凝固切開装置は、電気エネルギーを超音波の振動 に変換し、凝固・切開に利用するものです。先端部分を組織に接触させることで摩擦熱 を発生させ、凝固(止血)しながら組織を切り離す事ができます。

超音波エネルギーデバイス

● 高周波エネルギーデバイス(電気メス)

オリンパスでは、高周波電流をエネルギー源とした、いわゆる電気メスも実用化して います。高周波電流を用いた電気メスには、モノポーラと呼ばれる一つの電極のもの と、バイポーラと呼ばれる二つの電極のものがあります。特にバイポーラの場合には、 小さな病変部などをピンポイントで焼灼することが可能となり、処置部分以外への熱 損傷のリスクが抑えられます。

高周波エネルギーデバイス(電気メス)

● バイポーラ高周波と超音波の統合エネルギーデバイス

止血に優れるバイポーラ高周波エネルギーと、切開機能に優れた超音波エネルギー を統合したエネルギーデバイスです。1本のデバイスで血管の封止、止血、組織の凝 固·切開、剥離までをサポートする高い汎用性により、手術効率の向上に貢献します。

バイポーラ高周波·超音波統合エネルギーシステム

Appendix Appendix

内視鏡事業の歴史:消化器内視鏡

1950

1964

1982

1985

2002

2020

世界で初めて実用的な胃カメラを開発

ファイバースコープの登場

超音波内視鏡システムを発売

1949年、「日本人に多い胃がんをなんとか治し たい」という東京大学附属病院·小石川分院外科 の宇治達郎医師からの依頼で、オリンパスの技 術陣が胃カメラの開発をスタートしました。胃の 中を明るく照らす超小型電球、広い範囲を映し 出す広角レンズ、フィルム巻き取り装置、体内に 挿入する蛇管部分の素材選びなど、さまざまな 要素技術の開発を重ね、1950年に試作機の開 発に成功、2年後の1952年には製品化し、販売 を開始しました。その後も、医師との二人三脚で 機器の改良は急ピッチで進み、消化器疾患の診 断術も飛躍的に発達しました。

しかし、胃カメラにも問題点はありました。胃鏡と違い、胃の中を直接、リアルタ イムに見ることができないのです。その問題を解決したのが、1957年に登場し たファイバースコープでした。

オリンパスは、1964年に撮影画像が鮮明な胃カメラの強みを活かしたファイ バースコープ付き胃カメラを発売し、高い評価を得ました。ファイバースコープ は、直径が8ミクロンと髪の毛の10分の1の極細のグラスファイバーを数万本束 ね、画像を光学的に送るもので、スコープ本体が柔軟に曲がります。医師の目で 体内を直接、確認できるため、検査に必要な技術が簡単になり、急速に普及しま した。診断領域も食道、十二指腸、大腸、気管支、胆道や外科領域と大きく広がり ました。さらに、大きなメリットは、治療が可能になったことです。体内を観察しな がら、鉗子チャンネルから挿入した処置具で病変の手術をすれば、体の表面にメ スを入れることなく、低侵襲の手術が可能になりました。

ビデオ内視鏡システム「EVIS 1」を発売

1983年には、米国でビデオスコープが登 場します。オリンパスは満を持して1985 年に発売しました。先端部に撮像素子で あるCCD(電荷結合素子)が組み込まれ、 その信号をビデオ信号に変え、テレビモ ニターに表示します。複数の医師や医療 従事者で共有できるようになり、診断の精 度が飛躍的に向上しました。その後も、画 像のハイビジョン化、NBI(狭帯域光観察) による腫瘍の診断など、さまざまな技術 的進展がありました。これによって、内視 鏡の治療面での応用も加速しています。

世界初のハイビジョン内視鏡システム 「EVIS LUCERA」を発売

2002年、オリンパスは世界で初めてのハ 2020年には、待望の消化器内視鏡システ イビジョン内視鏡システムを開発しまし た。最先端の画像技術を結集し、きわめて 微小な病変も診断できるほどの画像の精 度向上を提供することが可能になりまし た。粘膜のわずかな色彩の変化を強調表 示する [IHb色彩強調]機能や、一般観察 ではわかりにくい病変をはっきり見えるよ うにする「IHb擬似カラー表示」機能、動 画や静止画像の「電子拡大」機能など、よ り進歩した画像処理技術を搭載しました。

消化器内視鏡システム 「EVIS X1」を発売

ム「EVIS X1」を欧州、日本、アジア一部 地域で発売しました。前機種から約8年ぶ りにモデルチェンジする当社最上位機種 の消化器内視鏡システムです。内視鏡に よる病変の発見·診断·治療の質や検査効 率の向上を目指し、さまざまな独自技術 を搭載することで、がんなどの消化器疾 患の早期発見・早期診断・低侵襲治療に貢

■消化器内視鏡の歴史

ルーツは古代ギリシャ

「人間の体内をこの目で見たい。生命の神秘を 解き明かしたい。」古来、医学の分野では、体内 を観察する方法が探求されてきました。その歴 史は、紀元前4世紀、古代ギリシャで医聖ヒポク ラテスが活躍した時代にまでさかのぼります。 当時は馬が主要な交通手段で痔を患う人が多 く、肛門の内側を観察する機械で、痔を焼いて 治していたようです。これが、内視鏡のルーツと 言われています。近代的な内視鏡は、ずっと時 代を下り、ドイツの医師ボッチニが1805年に製 作した「導光器」から始まります。ランタンのよ うな外観で、金属製の筒を尿道や直腸、咽頭に 挿入し、ランプの光で観察する仕組みでした。

フランスで「内視鏡」命名

膀胱を観察する器具を製作。初めて、「エンドスの医師クスマウルです。1868年、デソルモの内 コープ(内視鏡)」と名付けました。

ドイツの大道芸人で検査

1853年にはフランスの医師デソルモが尿道や 世界で初めて、胃の観察に成功したのは、ドイツ 視鏡を発展させ、医療機械店に長さ47cm、直 径13mmの金属管をつくらせ、剣を飲む大道芸 人の検査に用いました。しかし、ランプの光では 光量が不足し、体内を十分に照らし出すことが できません。そのため、内視鏡の実用化には、電 気照明の登場を待つ必要がありました。1879 年にドイツの医師ニッツェとオーストリアの電気 技師ライターが電気照明を光源とした膀胱鏡、 その後、食道鏡と胃鏡をつくります。1881年に はライターの協力を得たポーランドの医師ミク リッチにより、先端部の3分の1を屈曲した硬性 胃鏡がつくられました。

より実用的な胃鏡の登場

ドイツの医師シンドラーが開発した軟性胃鏡でメラを装着し、消化器内を撮影する胃カメラの す。長さ75cm、直径11mmで先端の3分の1が ある程度曲がります。ただ、いずれの内視鏡も、 金属の管を体内に挿入するため、患者さんの苦発表しましたが、得られた画像は不鮮明で、実用 痛が大きく、臓器を突き破るなどの事故の恐れ 化には至りませんでした。 もあり、戦前までは、欧州や日本の一部で普及 するのにとどまりました。

胃カメラの構想

1932年にはより実用的な胃鏡が登場しました。 それに対し、やわらかい管の先端部に超小型力 構想が、欧米で19世紀末に浮上します。1898 年にドイツの医師、ランゲとメルチングが開発を

【1950年 OLYMPUS

(以降の当社歴史は上段をご覧ください。)

世界で初めて実用的な胃カメラを開発

内視鏡事業の歴史:外科内視鏡

1975

1986

1996

2017

2021

腹腔鏡の販売開始

外科内視鏡領域では、1975年にドイツ の硬性鏡メーカーWinter&lbe(W&I)社 (後のOWI社)の腹腔鏡の販売を開始し ています。その当時、腹腔鏡は、婦人科で は避妊手術などの目的に使われ、内科領 域では肝臓疾患などの診断のために肝臓 表面の観察、組織の採取などの手技に使 用されていました。

オリンパス初の外科向け 医療用TVシステムを発売

モニターで観察するというニーズが強くな り、オリンパスは外科向けのイメージング いきました。

硬性鏡画像のモニター観察における発達 サポートしました。

多様なニーズに応えるビデオシステム

その後、硬性鏡にテレビカメラを装着して手術室の中でも、多様な医療分野がそ れぞれの分野専用の内視鏡を使うことか ら、1996年には、単なる硬性鏡用のTV 機器として、TVシステムの開発に着手してカメラ装置ではなく、多様なニーズに応 え、多種類のカメラヘッドやビデオスコー 1986年には、外科向けの硬性鏡用と プを接続できる拡張性のあるビデオシ してはオリンパス初の医療用TVシステム ステム「OTV-S5」を導入しました。さら 「OTV-S | を開発・発売します。その後も に、1999年には手術室で多くの器具の 相次いで製品開発を行い、外科における 滅菌に使用される高圧蒸気滅菌(オート クレーブ) にも耐えられる構造のカメラ と普及をイメージング装置の面から大きく
ヘッドをラインアップした、ビデオシステム 「OTV-S6」を導入しました。

2015

4K技術搭載の外科手術用内視鏡システム 「VISERA 4K UHD」を発売

2013年には、ソニーとの合弁会社である、 ソニー・オリンパスメディカルソリューショ ンズ株式会社を設立しました。ソニーの最 先端のエレクトロニクス技術とオリンパス の医療機器製造·開発のノウハウを生かし て、医療の発展に貢献する製品の研究お よび開発に取り組んできました。そして、 2015年には、設立後初の製品として4K技 術が搭載された外科手術用内視鏡システ ムを発売し、「高精細・広色域・拡大視の画 像による内視鏡外科手術」という新たな価 値を提供しています。

外科手術用内視鏡システム 「VISERA ELITE II」を発売

2017年には、3DおよびIR(赤外光)観察 に対応したシステムを発売しました。3D技 術によって、モニター上でも奥行きが把握 しやすくなり、患部の切除や血管封止など の施術がしやすくなることが期待されてい ます。また、医療現場で研究が進んでいる IR (赤外光)観察に対応することで、肉眼で 見るよりも分かりやすく、血管や血流など を観察できるようになりました。

蛍光イメージング市場の ポートフォリオを拡充

2021年には、オランダの医療機器メー カーQuest Photonic Devices社を完全 子会社化しました。近赤外光と蛍光色素を 組み合わせ、血流に流れている蛍光薬剤 が光ることにより、細胞下の血管などを可 視化する蛍光イメージングの技術を獲得 しました。急速に拡大している蛍光イメー ジング市場のポートフォリオを拡充すると ともに、次世代の分子イメージング技術の 研究·開発に期待しています。

■内視鏡外科手術の歴史

ルーツは肺結核治療

内視鏡を使った外科手術の歴史は、1910年頃、 肺結核の治療に胸腔鏡が用いられたことにさか のぼります。その後、1960年代に入り、欧州で泌 尿器科/婦人科領域の診断において腹腔鏡が 使われました。その鮮明な映像をもとに、尿路結 石などの治療に応用されるようになりました。

【1975年 OLYMPUS

(以降の当社歴史は上記をご覧ください。)

腹腔鏡の販売開始

内視鏡外科手術の始まり

1978年にはドイツの外科医クルト・ゼムが自動 気腹装置を開発し、1981年に世界で初めて、内 視鏡下で虫垂切除手術を実施したことが知られ ています。それは、腹部の穴から挿入した腹腔鏡 をのぞきながら手術をするという、従来の腹腔 鏡の使い方を大きく変える試みでした。さらに、 1985年には、ドイツの外科医エリッヒ・ミューエ が内視鏡下の胆のう摘出術を行い、70術例を報 告しています。

モレ医師の大きな足跡

しかし、内視鏡外科手術の普及へ向け、大きな足跡を残したのは、フランスの外科医フィリップ・モレで す。彼は1987年、腹腔鏡にCCDカメラを接続し、テレビモニターに映しながら、胆のう摘出術を行い ました。医師と助手、技師が視野を共有しながら、協力して手術を行う現在のスタイルを確立したので す。日本では、1990年に帝京大学の山川達郎教授により、初めて内視鏡下の胆のう摘出術が行われま した。胃がんでは、1991年以降、内視鏡補助下での胃の切除が行われるようになりました。

内視鏡外科手術の普及が加速した背景には、技術的な進展があります。前述のように、内視鏡と組 み合わせるCCDカメラが登場し、モニター画面を通じ、医師と助手が高度に連携することが可能にな りました。また、手で直接アクセスできない体腔内で、手術するための機器、装置の開発が急ピッチで 進んだことも大きな要因です。

1992年から保険適用対象に

内視鏡外科手術は、日本では、1992年の胆のう 摘出術から保険適用となりました。1994年にへ ルニア修復術、肺切除術、婦人科手術が、1995 年に胃切除、1996年には脾臓摘出と肝臓摘出な ど18手技が保険適用となりました。

日本では、内視鏡外科手術の普及に向けた 活動も盛んです。1990年に内視鏡外科手術研 究会が発足し、1995年には日本内視鏡外科学会 (JSES)に発展しました。内視鏡外科手術の研 究と教育が目的で、1万人以上が加盟していま す。十分な技量を持つ医師を認定する技術認定 制度があるほか、機関紙発行、学会の開催を通じ て、手技の啓蒙活動を行っています。

Appendix Appendix

治療機器事業の歴史:消化器科(処置具)

1966 -

1970

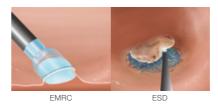
1975

2002

2020

当社初の生検用スコープおよび 処置具(生検鉗子・細胞診ブラシ)を発売

1966年、オリンパスは内視鏡の挿入部内部 に処置具を通す管(チャンネル)をもつ生検用 ファイバースコープを市場に投入しました。従 来の画像診断に加え、生検鉗子を使って組織 の一部を採取し、病理医が顕微鏡で細かく検 査することによって、早期胃がんの診断体制 が大きく整備されました。その後、内視鏡用処 置具は、処置や治療用途別に発展していきま す。1968年に入ると、胃ポリープのスネアによ る切り取り、高周波電流を流した生検鉗子な どによる切除事例が学会で相次いで発表され ました。



胆道、膵臓分野で大きな発展

1970年には十二指腸ファイバースコープ を発売し、胆道・膵臓分野の診断や処置にも 大きな発展がありました。造影チューブを 使って、X線下で胆道、膵臓を映し出しなが ら、腫瘍などの病変を発見するERCP(内 視鏡的逆行性胆道膵管造影術)や、十二指 腸の乳頭の開口部を高周波メスで切開す るEST(内視鏡的乳頭括約筋切開術)など の手技が次々と開発されています。

止血新手技に貢献

さらに、1975年には出血のない内視鏡処 置、内視鏡で止血を、という要求に応えて、 出血部位を高周波で焼灼し、止血するため の凝固子という処置具を発売しました。ま た、出血部位を直接つまみ、把持することで 止血をする内視鏡用クリップも同年に発売 しています。その後、10年もの年月をかけ て改良を続け、クリップは広く止血や切除す る部分のマーキングなどに使われるように なりました。

1980年代

より広範囲の病変を切除

病変部全周の粘膜を一括に切除

消化器疾患治療機器のラインアップ拡充

1980年代には、医師とオリンパスの共同開 発により、EMR(内視鏡的粘膜切除術)が 実用化されました。早期の胃がんや大腸が んなどの病変組織と正常組織の間に、生理 食塩水を注射して膨らませ、スネアで病変 を切り取る手術方法です。処置具の発達に より、2002年にはより広範囲の早期病変を 切り取ることができるESD(内視鏡的粘膜 下層剥離術)も登場しました。

2002年には、針状ナイフの先端にセラミッ ク製の絶縁体を装着することで穿孔リスク を低減させた高周波ナイフ、2008年には 用途に合わせてナイフの長さをスイッチし て使用できる高周波ナイフなどを開発しま した。これらの処置具によって、より安全に 病変部全周の粘膜を一括に切除する手技 の開発に貢献しました。

2020年には英国医療機器メーカー Arc Medical Design社を買収すること で、消化器疾患治療機器のラインアップ を拡充しました。同社の主力製品である 「ENDOCUFF VISION™*」は大腸内視 鏡検査や内視鏡的ポリープ切除術などにお ける視認性の維持に貢献するように設計さ れており、腺腫性ポリープの早期発見・治療 への貢献が期待されます。

治療機器事業の歴史:泌尿器科

1972

腎臓ファイバースコープと硬性膀胱鏡

腎臓ファイバースコープの発売と

硬性膀胱鏡の開発

泌尿器科領域では、古くから硬性鏡を使用

した診断・処置が行われていましたが、胃力

メラからスタートしたオリンパスは、この領

域では新規参入者でした。しかし、1970年

に外科的な切開をせず、尿管や腎盂を観察

できる腎臓ファイバースコープを東京大学

医学部泌尿器科と共同で開発、東京大学

1979

ドイツの硬性鏡メーカーを買収

1979年には、ドイツの硬性鏡メーカー Winter & Ibe (W&I)社を子会社化し、硬性 鏡の製造拠点としました。これによりオリン パスは、当時硬性鏡の主力マーケットであっ た泌尿器科領域を中心とした硬性鏡の製 品ラインアップを獲得し、事業展開を加速し ていきます。W&I社の製造技術に、オリンパ スの光学技術を組み合わせ、光学性能や操 作性を向上し、従来にはなかったシステム を発売し、同時に硬性膀胱鏡「CYS-K1」も 性やデザイン性を付加していきました。

1986


ファイバースコープの改良と 低侵襲治療への貢献

1986年には、膀胱ファイバースコープ「CYF」 を導入し、泌尿器科への取り組みを強化して いきました。硬性鏡とは異なり、柔軟性のある 挿入部が診断時の苦痛の軽減に貢献するとと もに、スコープ先端が湾曲する特長により、膀 胱内の広い部分の観察が可能になりました。

また、腎盂尿管ファイバースコープでは、 挿入部の細さの追求や光学性能、鉗子用 チャンネルの径や先端部形状の挿入性向上 などの改良が進み、尿管の観察・処置になく てはならないものとなっていきました。

2005

2005年には、肥大した前立腺を切除する TURisという新しい術式が医師により開発 され、オリンパスは世界で初めてTURis専 用の内視鏡切除ループ、切除用の高周波電 流を制御する高周波電源装置を開発して います。TURisでは、電解質溶液を介して 電極全周を放電させて切除するので、従来 た。

2008

腎盂尿管ビデオスコープ Gyrus製エネルギーデバイス

尿管軟性鏡がビデオスコープへ 北米での販売力を強化

2008年には、尿管軟性鏡はファイバースコー プからビデオスコープへと進化しました。

また同年には、泌尿器科や耳鼻科など の内視鏡と、電気メスを中心とするエネル ギーを応用した治療デバイスにおいて、 米国で長い歴史と高い評価をもつGyrus ACMI社を子会社化しました。最大市場で よりも安定した高い切れ味を実現できまし
ある北米での販売力が強化され、市場シェ アの拡大が進みました。

2020

ツリウムファイバーレーザー装置

さらに低侵襲な治療機器の導入

2020年には、前立腺肥大症の低侵襲治 療デバイス「iTind*」や、尿路結石を細か く破砕して体外に排出するためのツリウ ムファイバーレーザー装置「SOLTIVE SuperPulsed Laser System*」を市場に 投入しました。どちらも患者さんの負担軽 減に貢献する治療機器です。これらの製品 の導入により、医師、患者さんに新たな選択 肢を提供すると共に、泌尿器科領域のポー トフォリオを一層充実させてまいります。

*2021年9月末時点で医薬品医療機器等法未承認品です

43

が世界で初めて臨床応用に成功しました。 1972年には腎臓ファイバースコープ「KF」 開発しています。

治療機器事業の歴史:呼吸器科

1968

気管支ファイバースコープの発売

プなどの製品完成度が高い評価を得て、イバースコープが誕生しました。 世界各国に販売されていきました。特に気 を選択できることは、他社には真似のでき
ていた呼吸器科領域でもビデオスコープ
試作品の検討などを開始しました。 ないものでした。

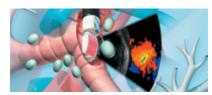
気管支ビデオスコープ

ファイバースコープから ビデオスコープへ進化

技術の活用が進みました。

2010

肺気腫・気胸治療デバイスの獲得


1997

超音波内視鏡下の手技の検討

1968年には、呼吸器科領域向けの気管支 この後、改良が重ねられ、3.2mmの大 気管支壁外のリンパ節に気管支鏡を使っ ファイバースコープが発売されます。ファ チャンネルを有するスコープから、外径が て針を刺し、吸引生検で肺がんのステージ イバーの画質とスコープ機種のラインアッ 1.8mmのスコープまで、多くの機種のファ 診断をする方法(TBNA)があります。以前 は、この手技は針の先端が確認できない状 そして、ビデオスコープへと進化してい 況で実施されていましたが、1997年頃、こ 管支内の目的部位により、挿入部径3mm、 きます。1993年には気管支ビデオスコー の手技に超音波内視鏡を使いたいという 4mm、5mmの3種類の中から最適な仕様 プを3モデル発売、その後、細さが求められ 医師からの要請に応え、当社は製品仕様や

2004

超音波内視鏡下の手技の普及

に貢献しました。

多くの検討と試作品の製作を重ね、2004 肺がん以外の非がん性疾患領域での内視 年には超音波気管支内視鏡で針の先端を 鏡の適応拡大にも本格的に取り組んでい 確認しながらTBNAを実施するための内視 きました。2010年には、肺気腫および気胸 鏡と専用の穿刺針を開発·発売しました。こなどの肺疾患および肺損傷に適用する治 超音波気管支鏡ガイド下針生検(EBUS-連結子会社化しました。増加傾向にある肺

れによって、超音波内視鏡下でのTBNA、療デバイスを手掛ける米国Spiration社を より、肺野部(気管支末梢領域)の病変が発 TBNA)という手技が普及、低侵襲で高い診 疾患に対しての低侵襲な治療手段として、 分かれした気管支末梢部への気管支鏡や 断能力をもつリンパ節転移診断法の実現 同社が保有していた気管支鏡下の治療デ 処置具の挿入を支援する電磁ナビゲーショ バイス(バルブ*1)を提供し、ビジネスを加 ンシステム*1をポートフォリオに加えること 速させていきます。

2020

肺がんの早期診断・治療に貢献する 電磁ナビゲーションシステム*1の獲得

2020年には、呼吸器インターベンショ ン分野*2に注力するVeran Medical Technologies社を買収しました。

昨今では低線量CT検査の普及·拡大に 見されることが増えてきています。細く枝 で、病変部へのスムーズなアクセスや、肺 がんの確定診断における更なる貢献が期 待できます。

医療分野のあゆみ

年	主な出来事
1950	世界初の実用的なガストロカメラの開発
1952	上記ガストロカメラを製品化し「GT-I」として発表
1955	胃カメラ研究会発足
1964	ファイバースコープ付きガストロカメラ「GTF」発売
	欧州現地法人設立
1966	生検用ファイバースコープ「GFB」発売
1968	米国現地法人設立
1974	独Winter & Ibe社と業務提携(翌年、外科内視鏡分野に進出)
1979	Winter & Ibe社を子会社化
	米カリフォルニア州に米国拠点設立(現北米最大の修理サービス拠点)
1982	超音波内視鏡システム発売
1985	ビデオ内視鏡システム「EVIS 1」発表
1987	英KeyMed社を子会社化
1989	北京駐在事務所開設
	シンガポールに現地法人設立
1990	ビデオスコープシステム「EVIS 100/200」シリーズ発表
1993	ロシアに現地法人設立
1999	タイに現地法人設立
2000	ビデオ内視鏡システム「EVIS EXERA」シリーズを欧米市場を中心に投入
2001	テルモ株式会社と医療機器分野で包括的な業務提携契約
2002	外科用ビデオ内視鏡システム「VISERA」シリーズ発売
	世界初のハイビジョン内視鏡システム「EVIS LUCERA」シ リーズを日本・英国・アジアー部地域で発売
	ブラジルに現地法人設立
2004	中国に医療機器の販売・サービス会社設立
	独Celon社を子会社化
2005	小腸用カプセル内視鏡システムを欧州で発売(以降、北米、日本、その他地域へと拡大)
	日本国内の内視鏡関連製品の修理、貸出備品管理の集中拠点 (福島県白河)を設立
2006	NBI(Narrow Band Imaging:狭帯域光観察)搭載のビデオスコープシステム「EVIS EXERA II」および「EVIS LUCERA SPECTRUM」シリーズを発売
	外科用ビデオ内視鏡システム「VISERA PRO」シリーズ発売
	ベトナムにサービス会社設立(現在は、販売機能も担う)

	年	主な出来事
	2006	中国に内視鏡関連製品の集中修理拠点を設立
	2008	英Gyrus社を子会社化
		ベトナムに医療機器の新工場を設立
		ドイツ・中国(上海)に自社トレーニングセンターを設立
	2009	インドに医療機器の販売会社設立
		チェコの新工場稼働
	2010	米Spiration社を子会社化
		中国(北京)に自社トレーニングセンターを設立
	2011	米Spirus Medical社を子会社化
		外科用ビデオ内視鏡システム「VISERA ELITE」シリーズを 発売
		NBI (Narrow Band Imaging:狭帯域光観察)内視鏡システムが「平成23年度 全国発明表彰」の「内閣総理大臣発明賞」を受賞
	2012	消化器内視鏡システム「EVIS EXERA III」「EVIS LUCERA ELITE」シリーズを発売
		世界初、バイポーラ高周波と超音波の統合エネルギーデバイス「THUNDERBEAT」を発売
	2013	ソニーとの合併会社「ソニー·オリンパスメディカルソリューションズ株式会社」を設立
		外科手術用3D内視鏡システムを発売(世界初となる先端湾 曲機能を搭載した3Dビデオスコープも同時発売)
		中国(広州)に自社トレーニングセンターを設立
	2015	4K外科手術用内視鏡システム「VISERA 4K UHD」を発表
	2016	タイに自社トレーニングセンターを設立
		ドバイに現地法人設立
	2017	外科手術用内視鏡システム「VISERA ELITE Ⅱ」を発売
		米Image Stream Medical社を子会社化
	2019	治療機器事業のグローバル事業統括機能を米国に配置
	2020	消化器内視鏡システム「EVIS X1」を日本・欧州・アジア一部地域で発売
		英Arc Medical Design社を買収
		AIを活用した内視鏡CADプラットフォーム「ENDO-AID」を発売
		米Veran Medical Technologies社を買収
	2021	オランダQuest Photonic Devices社を買収
		イスラエルMedi-Tate社を買収

※青字は拠点設立や子会社化に関するもの

参考文献(発行年月順)

吉村 昭『光る壁画』(新潮社、1984年)

田村 君英、藤田 力也『ナースのための消化器内視鏡マニュアル』(学習研究社、2003年)

田中 雅夫、清水 周次『内視鏡 検査・治療・ケアがよくわかる本』(照林社、2004年)

田沼 久美子、益田 律子、三枝 英人『しくみと病気がわかる からだの事典』(成美堂出版、2007年)

黒川 良望 『最新の内視鏡手術がわかる本』 (法研、2007年)

日本医師会雑誌『特集 内視鏡外科手術の現況と今後の展望』(2008年12月 第137巻・第9号)

日本臨床『特集 内視鏡・内視鏡・外科治療最前線 - 低侵襲治療の進歩-1(2010年7月 第68巻・第7号) NPO法人 日本から外科医がいなくなることを憂い行動する会 『きみが外科医になる日』 (講談社、2010年)

丹羽 寛文 『消化管内視鏡の歴史』 (日本メディカルセンター、2010年)

^{*1 2021}年9月末時点で医薬品医療機器等法未承認品です

^{*2} 気管支鏡を使った治療・診断